614 research outputs found
A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks
Understanding how the dynamics of a neural network is shaped by the network
structure, and consequently how the network structure facilitates the functions
implemented by the neural system, is at the core of using mathematical models
to elucidate brain functions. This study investigates the tracking dynamics of
continuous attractor neural networks (CANNs). Due to the translational
invariance of neuronal recurrent interactions, CANNs can hold a continuous
family of stationary states. They form a continuous manifold in which the
neural system is neutrally stable. We systematically explore how this property
facilitates the tracking performance of a CANN, which is believed to have clear
correspondence with brain functions. By using the wave functions of the quantum
harmonic oscillator as the basis, we demonstrate how the dynamics of a CANN is
decomposed into different motion modes, corresponding to distortions in the
amplitude, position, width or skewness of the network state. We then develop a
perturbative approach that utilizes the dominating movement of the network's
stationary states in the state space. This method allows us to approximate the
network dynamics up to an arbitrary accuracy depending on the order of
perturbation used. We quantify the distortions of a Gaussian bump during
tracking, and study their effects on the tracking performance. Results are
obtained on the maximum speed for a moving stimulus to be trackable and the
reaction time for the network to catch up with an abrupt change in the
stimulus.Comment: 43 pages, 10 figure
The characterisation of AOP2: a gene associated with the biosynthesis of aliphatic alkenyl glucosinolates in Arabidopsis thaliana
<p>Abstract</p> <p>Background</p> <p>Glucosinolates, a group of nitrogen and sulfur containing compounds associated with plant-insect interactions, are produced by a number of important <it>Brassicaceae </it>crop species. In <it>Arabidopsis </it>the <it>AOP2 </it>gene plays a role in the secondary modification of aliphatic (methionine-derived) glucosinolates, namely the conversion of methylsulfinylalkyl glucosinolates to form alkenyl glucosinolates, and also influences aliphatic glucosinolate accumulation.</p> <p>Results</p> <p>This study characterises the primary structural variation in the coding sequences of the <it>AOP2 </it>gene and identifies three different <it>AOP2 </it>alleles based on polymorphisms in exon two. To help determine the regulatory mechanisms mediating <it>AOP2 </it>expression amongst accessions, <it>AOP2 </it>5' regulatory regions were also examined however no major differences were identified. Expression of the <it>AOP2 </it>gene was found to be most abundant in leaf and stem tissue and was also found to be light dependent, with a number of light regulatory elements identified in the promoter region of the gene. In addition, a study was undertaken to demonstrate that the <it>Arabidopsis AOP2 </it>gene product is functional <it>in planta</it>. The over-expression of a functional <it>AOP2 </it>allele was found to successfully convert the precursor methylsulfinyl alkyl glucosinolate into the alkenyl form.</p> <p>Conclusions</p> <p>The expression of the <it>AOP2 </it>gene has been found to be influenced by light and is most highly expressed in the photosynthetic parts of the <it>Arabidopsis </it>plant. The level of <it>AOP2 </it>transcript decreases rapidly in the absence of light. <it>AOP2 </it>exists as at least three alleles in different <it>Arabidopsis </it>accessions and we have demonstrated that one of these, <it>AOP2-2</it>, is functionally able to convert methylsulfinyl glucosinolates into the alkenyl form. The demonstration of the <it>in planta </it>functionality of the <it>Arabisopsis AOP2 </it>gene is an important step in determining the feasibility of engineering glucosinolate profiles in food plants.</p
Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements
Author's manuscript made available in accordance with the publisher's policy.The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10 m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (âŒ1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate between different hydrological components and add insight into expected hydrological behavior
Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24
Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity
Analysis of lesion localisation at colonoscopy: outcomes from a multi-centre U.K. study
Background:
Colonoscopy is currently the gold standard for detection of colorectal lesions, but may be limited in anatomically localising lesions. This audit aimed to determine the accuracy of colonoscopy lesion localisation, any subsequent changes in surgical management and any potentially influencing factors.
Methods:
Patients undergoing colonoscopy prior to elective curative surgery for colorectal lesion/s were included from 8 registered U.K. sites (2012â2014). Three sets of data were recorded: patient factors (age, sex, BMI, screener vs. symptomatic, previous abdominal surgery); colonoscopy factors (caecal intubation, scope guide used, colonoscopist accreditation) and imaging modality. Lesion localisation was standardised with intra-operative location taken as the gold standard. Changes to surgical management were recorded.
Results:
364 cases were included; majority of lesions were colonic, solitary, malignant and in symptomatic referrals. 82% patients had their lesion/s correctly located at colonoscopy. Pre-operative CT visualised lesion/s in only 73% of cases with a reduction in screening patients (64 vs. 77%; p = 0.008). 5.2% incorrectly located cases at colonoscopy underwent altered surgical management, including conversion to open. Univariate analysis found colonoscopy accreditation, scope guide use, incomplete colonoscopy and previous abdominal surgery significantly influenced lesion localisation. On multi-variate analysis, caecal intubation and scope guide use remained significant (HR 0.35, 0.20â0.60 95% CI and 0.47; 0.25â0.88, respectively).
Conclusion:
Lesion localisation at colonoscopy is incorrect in 18% of cases leading to potentially significant surgical management alterations. As part of accreditation, colonoscopists need lesion localisation training and awareness of when inaccuracies can occur
Hubble Space Telescope Observations of the Draco Dwarf Spheroidal
We present an F606W-F814W color-magnitude diagram for the Draco dwarf
spheroidal galaxy based on Hubble Space Telescope WFPC2 images. The luminosity
function is well-sampled to 3 magnitudes below the turn-off. We see no evidence
for multiple turnoffs and conclude that, at least over the field of the view of
the WFPC2, star formation was primarily single-epoch. If the observed number of
blue stragglers is due to extended star formation, then roughly 6% (upper
limit) of the stars could be half as old as the bulk of the galaxy. The color
difference between the red giant branch and the turnoff is consistent with an
old population and is very similar to that observed in the old, metal-poor
Galactic globular clusters M68 and M92. Despite its red horizontal branch,
Draco appears to be older than M68 and M92 by 1.6 +/- 2.5 Gyrs, lending support
to the argument that the ``second parameter'' which governs horizontal branch
morphology must be something other than age. Draco's observed luminosity
function is very similar to that of M68, and the derived initial mass function
is consistent with that of the solar neighborhood.Comment: 16 pages, AASTeX, 9 postscript figures, figures 1 and 2 available at
ftp://bb3.jpl.nasa.gov/pub/draco/. Accepted for publication in the
Astronomical Journa
The Host Galaxy of GRB 031203: Implications of its low metallicity, low redshift, and starburst nature
We present Keck/NIRSPEC near-IR images and Magellan/IMACS optical
spectroscopy of the host galaxy of GRB 031203. The host is an actively
star-forming galaxy at z=0.1055 +/- 0.0001. This is the lowest redshift GRB
to-date, aside from GRB 980425. From the hydrogen Balmer lines, we infer an
extinction of A_V = 3.62 +/- 0.25 or a total reddening E_T(B-V) = 1.17 +/- 0.1
toward the sightline to the nebular regions. After correcting for reddening, we
perform an emission-line analysis and derive an ISM temperature of
T=13400+/-2000K and electron density of n_e = 300 cm^(-3). These imply a
metallicity [O/H]=-0.72+/-0.15 dex and a roughly solar abundance pattern for N,
Ne, S, and Ar. Integrating Ha, we infer a dust-corrected star formation rate
(SFR) of > 11 Msol/yr. These observations have the following implications: (1)
the galaxy has a low K'-band luminosity L ~ L^*/5, typical of GRB host
galaxies; (2) the low redshift indicates GRB 031203 had an isotropic-equivalent
gamma-ray energy release smaller than all previous confirmed GRB events. The
burst discovery raises the likelihood of identifying many additional low z, low
flux events with Swift; (3) the large SFR, low metallicity, and the inferred
hard radiation field is suggestive of massive star formation, supporting the
collapsar model; (4) several lines of evidence argue against the identification
of GRB 031203 as an X-ray flash event.Comment: 8 pages, 3 figures. Uses emulateapj5.sty. Accepted to the
Astrophysical Journal on April 20, 200
Instantons and unitarity in quantum cosmology with fixed four-volume
We find a number of complex solutions of the Einstein equations in the
so-called unimodular version of general relativity, and we interpret them as
saddle points yielding estimates of a gravitational path integral over a space
of almost everywhere Lorentzian metrics on a spacetime manifold with topology
of the "no-boundary" type. In this setting, the compatibility of the
no-boundary initial condition with the definability of the quantum measure
reduces reduces to the normalizability and unitary evolution of the no-boundary
wave function \psi. We consider the spacetime topologies R^4 and RP^4 # R^4
within a Taub minisuperspace model with spatial topology S^3, and the spacetime
topology R^2 x T^2 within a Bianchi type I minisuperspace model with spatial
topology T^3. In each case there exists exactly one complex saddle point (or
combination of saddle points) that yields a wave function compatible with
normalizability and unitary evolution. The existence of such saddle points
tends to bear out the suggestion that the unimodular theory is less divergent
than traditional Einstein gravity. In the Bianchi type I case, the
distinguished complex solution is approximately real and Lorentzian at late
times, and appears to describe an explosive expansion from zero size at T=0.
(In the Taub cases, in contrast, the only complex solution with nearly
Lorentzian late-time behavior yields a wave function that is normalizable but
evolves nonunitarily, with the total probability increasing exponentially in
the unimodular "time" in a manner that suggests a continuous creation of new
universes at zero volume.) The issue of the stability of these results upon the
inclusion of more degrees of freedom is raised.Comment: 32 pages, REVTeX v3.1 with amsfonts. (v2: minor typos etc corrected.
Respiratory modulation of oscillometric cuff pressure pulses and Korotkoff sounds during clinical blood pressure measurement in healthy adults
BACKGROUND:
Accurate blood pressure (BP) measurement depends on the reliability of oscillometric cuff pressure pulses (OscP) and Korotkoff sounds (KorS) for automated oscillometric and manual techniques. It has been widely accepted that respiration is one of the main factors affecting BP measurement. However, little is known about how respiration affects the signals from which BP measurement is obtained. The aim was to quantify the modulation effect of respiration on oscillometric pulses and KorS during clinical BP measurement.
METHODS:
Systolic and diastolic BPs were measured manually from 40 healthy subjects (from 23 to 65Â years old) under normal and regular deep breathing. The following signals were digitally recorded during linear cuff deflation: chest motion from a magnetometer to obtain reference respiration, cuff pressure from an electronic pressure sensor to derive OscP, and KorS from a digital stethoscope. The effects of respiration on both OscP and KorS were determined from changes in their amplitude associated with respiration between systole and diastole. These changes were normalized to the mean signal amplitude of OscP and KorS to derive the respiratory modulation depth. Reference respiration frequency, and the frequencies derived from the amplitude modulation of OscP and KorS were also calculated and compared.
RESULTS:
Respiratory modulation depth was 14 and 40 % for OscP and KorS respectively under normal breathing condition, with significant increases (both p  0.05) during deep breathing, and for the oscillometric signal during normal breathing (p > 0.05).
CONCLUSIONS:
Our study confirmed and quantified the respiratory modulation effect on the oscillometric pulses and KorS during clinical BP measurement, with increased modulation depth under regular deeper breathing
- âŠ