217 research outputs found

    Thrombin-induced changes in platelet membrane glycoproteins Ib, IX, and IIb-IIIa complex

    Get PDF
    Platelet membrane glycoprotein Ib (GPIb) and the GPIIb-IIIa complex have central roles in the interaction of platelets with the plasma coagulation system, damaged vessel walls, and other platelets. We investigated the effects of thrombin on these glycoproteins. Monoclonal antibodies were used to assess platelet surface glycoproteins by flow cytometry, total platelet glycoprotein content by immunoassay, and glycoproteins released from platelets, also by immunoassay. Five new observations were made with regard to thrombin-induced changes in platelet membrane glycoproteins: (a) The marked decrease in platelet surface binding of antibodies directed at GPIb was not confined to antibodies directed at the von Willebrand factor binding site. (b) There was a marked decrease in platelet surface binding of an antibody directed at GPIX, with maintenance of the 1:1 ratio of platelet surface binding of antibodies directed at GPIb and GPIX. (c) Changes in platelet surface binding of antibodies were not restricted to a distinct subpopulation of platelets. (d) There was no associated platelet release of glycocalicin (a proteolytic fragment of GPIb). (e) There was no associated platelet release of the GPIIb-IIIa complex. These thrombin-induced changes may be important in modulating the reactivity of platelets with the damaged vessel wall and with each other

    Platelet Function Monitoring in Patients With Coronary Artery Disease

    Get PDF
    Studies focused on patient responsiveness to antiplatelet therapies, particularly aspirin and clopidogrel, have increased in recent years. However, the relations of in vivo platelet function and adverse clinical events to results of ex vivo platelet function tests remain largely unknown. This article describes current methods of measuring platelet function in various clinical and research situations and their advantages and disadvantages, reviews evidence for antiplatelet response variability and resistance, discusses the potential pitfalls of monitoring platelet function, and demonstrates emerging data supporting the positive clinical and treatment implications of platelet function testing

    Electrodynamics with Lorentz-violating operators of arbitrary dimension

    Get PDF
    The behavior of photons in the presence of Lorentz and CPT violation is studied. Allowing for operators of arbitrary mass dimension, we classify all gauge-invariant Lorentz- and CPT-violating terms in the quadratic Lagrange density associated with the effective photon propagator. The covariant dispersion relation is obtained, and conditions for birefringence are discussed. We provide a complete characterization of the coefficients for Lorentz violation for all mass dimensions via a decomposition using spin-weighted spherical harmonics. The resulting nine independent sets of spherical coefficients control birefringence, dispersion, and anisotropy. We discuss the restriction of the general theory to various special models, including among others the minimal Standard-Model Extension, the isotropic limit, the case of vacuum propagation, the nonbirefringent limit, and the vacuum-orthogonal model. The transformation of the spherical coefficients for Lorentz violation between the laboratory frame and the standard Sun-centered frame is provided. We apply the results to various astrophysical observations and laboratory experiments. Astrophysical searches of relevance include studies of birefringence and of dispersion. We use polarimetric and dispersive data from gamma-ray bursts to set constraints on coefficients for Lorentz violation involving operators of dimensions four through nine, and we describe the mixing of polarizations induced by Lorentz and CPT violation in the cosmic-microwave background. Laboratory searches of interest include cavity experiments. We present the theory for searches with cavities, derive the experiment-dependent factors for coefficients in the vacuum-orthogonal model, and predict the corresponding frequency shift for a circular-cylindrical cavity.Comment: 58 pages two-column REVTeX, accepted in Physical Review

    Platelet activation in cystic fibrosis

    Get PDF
    Cystic fibrosis (CF) is caused by a mutation of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). We examined platelet function in CF patients because lung inflammation is part of this disease and platelets contribute to inflammation. CF patients had increased circulating leukocyte-platelet aggregates and increased platelet responsiveness to agonists compared with healthy controls. CF plasma caused activation of normal and CF platelets; however, activation was greater in CF platelets. Furthermore, washed CF platelets also showed increased reactivity to agonists. CF platelet hyperreactivity was incompletely inhibited by prostaglandin E(1) (PGE(1)). As demonstrated by Western blotting and reverse-transcriptase-polymerase chain reaction (RT-PCR), there was neither CFTR nor CFTR-specific mRNA in normal platelets. There were abnormalities in the fatty acid composition of membrane fractions of CF platelets. In summary, CF patients have an increase in circulating activated platelets and platelet reactivity, as determined by monocyte-platelet aggregation, neutrophil-platelet aggregation, and platelet surface P-selectin. This increased platelet activation in CF is the result of both a plasma factor(s) and an intrinsic platelet mechanism via cyclic adenosine monophosphate (cAMP)/adenylate cyclase, but not via platelet CFTR. Our findings may account, at least in part, for the beneficial effects of ibuprofen in CF

    Consensus recommendations on flow cytometry for the assessment of inherited and acquired disorders of platelet number and function : communication from the ISTH SSC Subcommittee on Platelet Physiology

    Get PDF
    Flow cytometry is increasingly used in the study of platelets in inherited and acquired disorders of platelet number and function. However, wide variation exists in specific reagents, methods, and equipment used, making interpretation and comparison of results difficult. The goal of the present study was to provide expert consensus guidance on the use of flow cytometry for the evaluation of platelet disorders. A modified RAND/UCLA survey method was used to obtain a consensus among 11 experts from 10 countries across four continents, on the appropriateness of statements relating to clinical utility, pre-analytical variables, instrument and reagent standardization, methods, reporting, and quality control for platelet flow cytometry. Feedback from the initial survey revealed that uncertainty was sometimes due to lack of expertise with a particular test condition rather than unavailable or ambiguous data. To address this, the RAND method was modified to allow experts to self-identify statements for which they could not provide expert input. There was uniform agreement among experts in the areas of instrument and reagent standardization, methods, reporting, and quality control and this agreement is used to suggest best practices in these areas. However, 25.9% and 50% of statements related to pre-analytical variables and clinical utility, respectively, were rated as uncertain. Thus, while citrate is the preferred anticoagulant for many flow cytometric platelet tests, expert opinions differed on the acceptability of other anticoagulants, particularly heparin. Lack of expert consensus on the clinical utility of many flow cytometric platelet tests indicates the need for rigorous multicenter clinical outcome studies
    corecore