2 research outputs found

    IUPACpal: efficient identification of inverted repeats in IUPAC-encoded DNA sequences

    Get PDF
    Background: An inverted repeat is a DNA sequence followed downstream by its reverse complement, potentially with a gap in the centre. Inverted repeats are found in both prokaryotic and eukaryotic genomes and they have been linked with countless possible functions. Many international consortia provide a comprehensive description of common genetic variation making alternative sequence representations, such as IUPAC encoding, necessary for leveraging the full potential of such broad variation datasets. Results: We present IUPACpal, an exact tool for efficient identification of inverted repeats in IUPAC-encoded DNA sequences allowing also for potential mismatches and gaps in the inverted repeats. Conclusion: Within the parameters that were tested, our experimental results show that IUPACpal compares favourably to a similar application packaged with EMBOSS. We show that IUPACpal identifies many previously unidentified inverted repeats when compared with EMBOSS, and that this is also performed with orders of magnitude improved speed.</p

    Efficient Identification of k -Closed Strings

    No full text
    A closed string contains a proper factor occurring as both a prefix and a suffix but not elsewhere in the string. Closed strings were introduced by Fici (WORDS 2011) as objects of combinatorial interest. This paper addresses a new problem by extending the closed string problem to the k-closed string problem, for which a level of approximation is permitted up to a number of Hamming distance errors, set by the parameter k. We address the problem of deciding whether or not a given string of length n over an integer alphabet is k-closed and additionally specifying the border resulting in the string being k-closed. Specifically, we present an (kn)-time and (n)-space algorithm to achieve this along with the pseudocode of an implementation and proof-of-concept experimental results
    corecore