53 research outputs found
Luminescence properties of mechanochemically synthesized lanthanide containing MIL-78 MOFs
Three metal–organic framework (MOF) compounds, Ln0.5Gd0.5{C6H3(COO)3}; Ln = Eu, Tb, and Dy with a MIL-78 structure, have been synthesized by a solvent-free mechanochemical method from stoichiometric mixtures of benzene 1,3,5-tricarboxylic acid, C6H3(COOH)3, also known as trimesic acid, and the respective lanthanide carbonates, Ln2(CO3)3·xH2O, Ln = Eu, Gd, Tb and Dy. MIL-78 (Ln0.5Gd0.5) shows the characteristic red, green, and yellow luminescence of Eu3+, Tb3+, and Dy3+, respectively. Efficient intramolecular energy transfer from the ligand triplet state to the excited states of Ln3+ ions can be observed. The lifetimes and quantum yields of these compounds are studied and discussed in detail. Among the three compounds, the Tb3+ containing compound shows the longest lifetime and highest quantum yield due to a smaller contribution from non-radiative decay pathways and better matching of the lowest triplet energy level of the benzenetricarboxylate ligand and the resonance level of Tb3+
Determination of density and concentration from fluorescent images of a gas flow
A fluorescent image analysis procedure to determine the distribution of
species concentration and density in a gas flow is proposed. The fluorescent
emission is due to the excitation of atoms/molecules of a gas that is
intercepted by an electron blade. The intensity of the fluorescent light is
proportional to the local number density of the gas. When the gas flow is a
mixture of different species, this proportionality can be exploited to extract
the contribution associated to the species from the spectral superposition
acquired by a digital camera. This yields a method that simultaneously reveals
species concentrations and mass density of the mixture. The procedure is
applied to two under-expanded sonic jets discharged into a different gas
ambient - Helium into Argon and Argon into Helium - to measure the
concentration and density distribution along the jet axis and across it. A
comparison with experimental and numerical results obtained by other authors
when observing under-expanded jets at different Mach numbers is made with the
density distribution along the axis of the jet. This density distribution
appears to be self-similar.Comment: New figures in portable .eps forma
IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.
Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury
- …