180 research outputs found
Assessment of waste heat recovery for a power generation system based on Volvo dual fuel engines
The electricity production from distributed renewable energy sources, like wind or solar PV, has considerably increased in last decade. To ensure a wide penetration of these renewable sources is necessary to integrate the fluctuation in the electricity production within the existing power network, even in network with limited transfer capacity between clusters.
This work investigates possibilities to integrate the fluctuations of the renewable energy sources with production of electricity with a system based on internal combustion engines of the Dual Fuel (DF) type using synthetic natural gas (SNG), and waste heat recovery (WHR).The system retains high flexibility in the electricity output (i.e. quick regulation), and high efficiency comparable to large electricity plants.
The design is based on a set of four medium size DF engines for a total power of around 2MW, and a WHR cycle operated with steam. The results showed an efficiency above 50% in a large range of operation of the engines with a peak above 52%, therefore comparable to gas turbine plants. Two designs of the WHR system were investigated (high pressure and low pressure) to improve heat recovery. The high pressure configuration is considered more suitable due to the lower complexity (single heat exchanger), which can be further exploited to expand the number of engines.
The efficiency of the steam turbine/expander is the most critical parameter for the WHR system. However, the results showed that even with low efficiency of steam turbine (ηST 50% - 60%) the total efficiency can reach above 50%, when the engines are operated at high load. A high efficiency steam turbine (ηST 80% - 90%) can rise the total efficiency by 2.5 percentile units
Large-Scale Production and Use of Biomethane
Societal ambitions to create an economy based on renewable resources, require the development of technologies transforming these resources into energy-carrying products and biomaterials. Dual fluidized bed (DFB) gasification represents a key technology for achieving sustainability targets, as it is a scalable and highly efficient route for the conversion of biomass. The development of DFB technology has led to the construction of the GoBiGas (Gothenburg-Biomass-Gasification) demonstration plant, in 2014. The GoBiGas plant is a world-first advancement for large-scale production of biofuels as it represents a substantial scaling up of the gasification technology combined with downstream biomethane synthesis. However, to ensure the desired breakthrough of biomass-based products, it is necessary to improve the profitability of gasification plants, through increasing their size, efficiency and identifying opportunities with high economic feasibility for the transport, energy, and chemical sectors.This thesis presents an exploration of potential improvements for the up-scaling of the biomethane process to a commercial scale. The work summarises and places in context the experience acquired in the research groups at Chalmers and G\uf6teborg Energi AB, including the experience gained from the dedicated experiments in the Chalmers Gasifier and during the commissioning phase of the GoBiGas plant. A method for analysis of the experimental data is introduced, with the goal of improving the quality of the simulations of large-scale gasification processes. The method is applied to the evaluation of the DFB gasifier at the GoBiGas plant, which is presented in the thesis and used as references for further investigations. Some of the measures investigated to increase the profitability of a large-scale plant were proposed in this work, including: an advanced biomass steam dryer integrated with the gasifier, power-to-gas conversion via direct heating of the DFB gasifier and co-production of biomethane with intermediate products for other chemical industries. Furthermore, the utilization of biomethane as fuel for heavy duty vehicles was evaluated within a project in collaboration with Volvo AB. The well-to-wheel approach was applied to calculate the emissions related to three state-of-the-technologies: spark-ignited, dual fuel and high-pressure direct injection.The evaluation of the DFB gasifier at GoBiGas has shown high fuel conversion, with char gasification of ~54%, and the fraction of the volatiles converted to methane of ~34%mass. The cold gas efficiency for GoBiGas was calculate in 71.7%LHVdaf using dried biomass (8% moist). The simulation of the DFB gasifier in a large-scale optimised process showed a cold gas efficiency up to ~85%LHVdaf using fresh biomass (40% moist) and an advanced drying systems. The chemical efficiency of such a plant was calculated in ~72% LHVdaf, which is more than 20pp higher than the current GoBiGas design. Owning to the efficient conversion of the biomass in the gasifier, the co-production of biomethane and other intermediate chemicals represents a feasible opportunity to increase the profitability of the plant. The chemical efficiency of such processes was estimated between 72% and 85% therefore, there is no substantial advantage to produce biomethane, unless biomethane is the desired end-product. \ua0As fuel for heavy-duty vehicles, biomethane reduces the emissions compared to diesel by 30 - 41 gCO2e per MJbiomass, with the biomethane produced at the GoBiGas plant. The emission saving can be increased to 43 - 54 gCO2esaved/MJbiomass if biomethane is produced at large scale. \ua0Following the demonstration at a commercial scale, biomethane is established as a biofuel with a high environmental impact, although the gap between the current status and its potential application is highlighted
Large-Scale Production and Use of Biomethane
Societal ambitions to create an economy based on renewable resources, require the development of technologies transforming these resources into energy-carrying products and biomaterials. Dual fluidized bed (DFB) gasification represents a key technology for achieving sustainability targets, as it is a scalable and highly efficient route for the conversion of biomass. The development of DFB technology has led to the construction of the GoBiGas (Gothenburg-Biomass-Gasification) demonstration plant, in 2014. The GoBiGas plant is a world-first advancement for large-scale production of biofuels as it represents a substantial scaling up of the gasification technology combined with downstream biomethane synthesis. However, to ensure the desired breakthrough of biomass-based products, it is necessary to improve the profitability of gasification plants, through increasing their size, efficiency and identifying opportunities with high economic feasibility for the transport, energy, and chemical sectors.This thesis presents an exploration of potential improvements for the up-scaling of the biomethane process to a commercial scale. The work summarises and places in context the experience acquired in the research groups at Chalmers and G\uf6teborg Energi AB, including the experience gained from the dedicated experiments in the Chalmers Gasifier and during the commissioning phase of the GoBiGas plant. A method for analysis of the experimental data is introduced, with the goal of improving the quality of the simulations of large-scale gasification processes. The method is applied to the evaluation of the DFB gasifier at the GoBiGas plant, which is presented in the thesis and used as references for further investigations. Some of the measures investigated to increase the profitability of a large-scale plant were proposed in this work, including: an advanced biomass steam dryer integrated with the gasifier, power-to-gas conversion via direct heating of the DFB gasifier and co-production of biomethane with intermediate products for other chemical industries. Furthermore, the utilization of biomethane as fuel for heavy duty vehicles was evaluated within a project in collaboration with Volvo AB. The well-to-wheel approach was applied to calculate the emissions related to three state-of-the-technologies: spark-ignited, dual fuel and high-pressure direct injection.The evaluation of the DFB gasifier at GoBiGas has shown high fuel conversion, with char gasification of ~54%, and the fraction of the volatiles converted to methane of ~34%mass. The cold gas efficiency for GoBiGas was calculate in 71.7%LHVdaf using dried biomass (8% moist). The simulation of the DFB gasifier in a large-scale optimised process showed a cold gas efficiency up to ~85%LHVdaf using fresh biomass (40% moist) and an advanced drying systems. The chemical efficiency of such a plant was calculated in ~72% LHVdaf, which is more than 20pp higher than the current GoBiGas design. Owning to the efficient conversion of the biomass in the gasifier, the co-production of biomethane and other intermediate chemicals represents a feasible opportunity to increase the profitability of the plant. The chemical efficiency of such processes was estimated between 72% and 85% therefore, there is no substantial advantage to produce biomethane, unless biomethane is the desired end-product. \ua0As fuel for heavy-duty vehicles, biomethane reduces the emissions compared to diesel by 30 - 41 gCO2e per MJbiomass, with the biomethane produced at the GoBiGas plant. The emission saving can be increased to 43 - 54 gCO2esaved/MJbiomass if biomethane is produced at large scale. \ua0Following the demonstration at a commercial scale, biomethane is established as a biofuel with a high environmental impact, although the gap between the current status and its potential application is highlighted
Fuel Quality Analysis for Biogas Utilization in Heavy Duty Dual Fuel Engines
The perspective of using gas form biomass gasification as fuel for dual fuel (DF) engines, without refine it all the way to synthetic natural gas (SNG) has been investigated. The initial gas from gasification contains of a blend of various components which are not commonly present in natural gas (NG). The operability of these components in a heavy duty DF engine has been assessed and compared to those of NG. Three parameters have been used to define the quality of the fuel: Lower Heating Value (LHV), Methane Number (MN) and Lower Flammability Limit (LFL)
Investigating the spatial characteristics of the crossmodal interaction between nociception and vision using gaze direction
The present study investigated the influence of nociceptive stimuli on visual stimuli processing according to the relative spatial congruence between the two stimuli of different sensory modalities. Participants performed temporal order judgments on pairs of visual stimuli, one presented near the hand on which nociceptive stimuli were occasionally applied, the other one either to its left or to its right. The visual hemifield in which the stimulated hand and the near visual stimulus appeared was manipulated by changing gaze direction. The stimulated hemibody and the stimulated visual hemifield were therefore either congruent or incongruent, in terms of anatomical locations. Despite the changes in anatomical congruence, judgments were always biased in favor of the visual stimuli presented near the stimulated hand. This indicates that nociceptive-visual interaction may rely on a realignment of the respective initial anatomical representations of the somatic and retinotopic spaces toward an integrated, multimodal representation of external space.</p
Scaffold-Hopping Strategies in Aurone Optimization: A Comprehensive Review of Synthetic Procedures and Biological Activities of Nitrogen and Sulfur Analogues
: Aurones, particular polyphenolic compounds belonging to the class of minor flavonoids and overlooked for a long time, have gained significative attention in medicinal chemistry in recent years. Indeed, considering their unique and outstanding biological properties, they stand out as an intriguing reservoir of new potential lead compounds in the drug discovery context. Nevertheless, several physicochemical, pharmacokinetic, and pharmacodynamic (P3) issues hinder their progression in more advanced phases of the drug discovery pipeline, making lead optimization campaigns necessary. In this context, scaffold hopping has proven to be a valuable approach in the optimization of natural products. This review provides a comprehensive and updated picture of the scaffold-hopping approaches directed at the optimization of natural and synthetic aurones. In the literature analysis, a particular focus is given to nitrogen and sulfur analogues. For each class presented, general synthetic procedures are summarized, highlighting the key advantages and potential issues. Furthermore, the biological activities of the most representative scaffold-hopped compounds are presented, emphasizing the improvements achieved and the potential for further optimization compared to the aurone class
In Silico Design of New Dual Inhibitors of SARS-CoV-2 MPRO through Ligand- and Structure-Based Methods
The viral main protease is one of the most attractive targets among all key enzymes involved in the life cycle of SARS-CoV-2. Considering its mechanism of action, both the catalytic and dimerization regions could represent crucial sites for modulating its activity. Dual-binding the SARS-CoV-2 main protease inhibitors could arrest the replication process of the virus by simultaneously preventing dimerization and proteolytic activity. To this aim, in the present work, we identified two series' of small molecules with a significant affinity for SARS-CoV-2 M-PRO, by a hybrid virtual screening protocol, combining ligand- and structure-based approaches with multivariate statistical analysis. The Biotarget Predictor Tool was used to filter a large in-house structural database and select a set of benzo[b]thiophene and benzo[b]furan derivatives. ADME properties were investigated, and induced fit docking studies were performed to confirm the DRUDIT prediction. Principal component analysis and docking protocol at the SARS-CoV-2 M-PRO dimerization site enable the identification of compounds 1b,c,i,l and 2i,l as promising drug molecules, showing favorable dual binding site affinity on SARS-CoV-2 M-PRO
- …