6 research outputs found

    Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration

    No full text
    Aim: Biomaterials that mimic the nanofibrous architecture of the natural extracellular matrix (ECM) are in the focus for stem cell hosting or delivery in tissue engineering of multilayered soft tissues such as skin, mucosa, or retina. Synthetic nanofibers for such ECM are usually produced by single-syringe electrospinning with only one needle-jet at very low production rates of 0.005-0.008?gç­©n(-1). The aim of this study was to utilize a novel industrial needle-free multijet electrospinning device with the potential for mass production of nanofibrous ECM (NF-ECM) exhibiting a controlled three-dimensional (3D) morphology for large-scale applications such as large area skin regeneration in patients with burns. Methods: The novel NanoSpideré ŽS200, an industrial apparatus originally designed for electrospinning of nanofibrous textile meshes, was used to fabricate 3D NF-ECMs of the following synthetic and natural biopolymers: collagen, gelatin, poly(caprolactone) (PCL), and poly(l-lactide-co-glycolide) (PLGA). Different concentrations of Gelatin polymer solution were electrospun under varying processing conditions, namely speed of spinning electrode rotation (u) and electric field intensity (E) by altering applied voltage (v) or the distance between electrodes (h) to achieve homogeneous desirable 3D morphology. Nanofiber diameters were assessed by scanning electron microscopy (SEM). Biocompatibility was tested by WST-1 (water-soluble tetrazolium salt) proliferation assay of seeded human mesenchymal stem cells (HMSCs). Biological performance of HMSCs on 3D PLGA NF-ECM was compared to two-dimensional (2D) PLGA film controls via SEM and confocal microscopy. Western blotting addressed the expression of surface adhesion proteins; focal adhesion kinase (FAK), phosphorylated FAK (pY397), a-tubulin, paxillin, vinculin. and integrin subunits; a5, av, and ß± proteins. Results: Large-scale mass production of NF-ECM membranes with a highly homogenous nanofiber morphology and 3D architecture could be produced with an extremely high production rate of 0.394á°®013?gç­©n(-1)ç­¨-1) when compared to standard procedures. This was achieved by electrospinning a 20% (wt)/(v) gelatin solution, in an electric field intensity of 0.381?kVç­­(-1). The nanofibers possessed diameters of around 180á´°?nm with 28% deviation. HSMCs proliferation was significantly improved on NF-ECMs derived from collagen, gelatin, and PLGA when compared to PCL or flat coverglass controls (p<0.01). PLGA NF-ECM in 3D nanofibrous architecture possessed significantly superior biocompatibility when compared to flat 2D PLGA film (p<0.05). Furthermore, on 3D PLGA NF-ECMs, HSMCs expressed a higher amount of a-tubulin and paxillin compared to the HMSCs cultured on a 2D PLGA film (p<0.05). HMSCs exhibited a complex multifaceted morphology on all NF-ECMs, where cells appeared to be integrated into the 3D NF-ECMs niches with complex cell filopodia extending into to all directions. In contrast, HMSCs on flat 2D films of the same materials or on coverglass displayed a simple flattened, monolayered structure. Conclusion: Needle-free multijet electrospinning can be used to mass produce artificial ECMs with intrinsic biocompatibility and desirable integration of stem cells for large-scale applications.No Full Tex

    Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency.

    Get PDF
    Expansion of pluripotent stem cells in defined media devoid of animal-derived feeder cells to generate multilayered three-dimensional (3D) bulk preparations or spheroids, rather than two-dimensional (2D) monolayers, is advantageous for many regenerative, biological or disease-modelling studies. Here we show that electrospun polymer matrices comprised of nanofibres that mimic the architecture of the natural fibrous extracellular matrix allow for feeder-free expansion of pluripotent human induced pluripotent stem cells (IPSCs) and human embryonic stem cells (HESCs) into multilayered 3D 'patty-like' spheroid structures in defined xeno-free culture medium. The observation that IPSCs and HESCs readily revert to 2D growth in the absence of the synthetic nanofibre membranes suggests that this 3D expansion behaviour is mediated by the physical microenvironment and artificial niche provided by the nanofibres only. Importantly, we could show that such 3D growth as patties maintained the pluripotency of cells as long as they were kept on nanofibres. The generation of complex multilayered 3D structures consisting of only pluripotent cells on biodegradable nanofibre matrices of the desired shape and size will enable both industrial-scale expansion and intricate organ–tissue engineering applications with human pluripotent stem cells, where simultaneous coupling of differentiation pathways of all germ layers from one stem cell source may be required for organ formation

    Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers

    No full text
    Transplanted retinal pigment epithelium (RPE) cells hold promise for treatment of age-related macular degeneration (AMD) and Stargardt disease (SD), but it is conceivable that the degenerated host Bruch's membrane (BM) as a natural substrate for RPE might not optimally support transplanted cell survival with correct cellular organization. We fabricated novel ultrathin three-dimensional (3-D) nanofibrous membranes from collagen type I and poly(lactic-co-glycolic acid) (PLGA) by an advanced clinical-grade needle-free electrospinning process. The nanofibrillar 3-D networks closely mimicked the fibrillar architecture of the native inner collagenous layer of human BM. Human RPE cells grown on our nanofibrous membranes bore a striking resemblance to native human RPE. They exhibited a correctly orientated monolayer with a polygonal cell shape and abundant sheet-like microvilli on their apical surfaces. RPE cells built tight junctions and expressed RPE65 protein. Flat 2-D PLGA film and cover glass as controls delivered inferior RPE layers. Our nanofibrous membranes may imitate the natural BM to such extent that they allow for the engineering of an in vivo-like human RPE monolayer that maintains the natural biofunctional characteristics. Such ultrathin membranes may provide a promising vehicle for a functional RPE cell monolayer implantation in the subretinal space in patients with AMD or SD.Griffith Health, School of Dentistry and Oral HealthNo Full Tex

    Nanospiderwebs:Artificial 3D Extracellular Matrix from Nanofibers by Novel Clinical Grade Electrospinning for Stem Cell Delivery

    No full text
    Novel clinical grade electrospinning methods could provide three-dimensional (3D) nanostructured biomaterials comprising of synthetic or natural biopolymer nanofibers. Such advanced materials could potentially mimic the natural extracellular matrix (ECM) accurately and may provide superior niche-like spaces on the subcellular scale for optimal stem-cell attachment and individual cell homing in regenerative therapies. The goal of this study was to design several novel "nanofibrous extracellular matrices" (NF-ECMs) with a natural mesh-like 3D architecture through a unique needle-free multi-jet electrospinning method in highly controlled manner to comply with good manufacturing practices (GMP) for the production of advanced healthcare materials for regenerative medicine, and to test cellular behavior of human mesenchymal stem cells (HMSCs) on these. Biopolymers manufactured as 3D NF-ECM meshes under clinical grade GMP-like conditions show higher intrinsic cytobiocompatibility with superior cell integration and proliferation if compared to their 2D counterparts or a clinically-approved collagen membrane.No Full Tex

    A clinically-feasible protocol for using human platelet lysate and mesenchymal stem cells in regenerative therapies

    No full text
    The transplantation of human stem cells seeded on biomaterials holds promise for many clinical applications in cranio-maxillo-facial tissue engineering and regenerative medicine. However, stem cell propagation necessary to produce sufficient cell numbers currently utilizes fetal calf serum (FCS) as a growth supplement which may subsequently transmit animal pathogens. Human platelet lysate (HPL) could potentially be utilized to produce clinical-grade stem cell-loaded biomaterials as an appropriate FCS substitute that is in line with clinically-applicable practice. The goal of this study was to investigate whether HPL can be successfully used to propagate human mesenchymal stem cells (HMSCs) seeded on clinically-approved collagen materials under clinically-applicable conditions using FCS as a control. HMSCs were isolated from bone marrow and cultured in the presence of 10% FCS or 10% HPL. Characterization of HMSCs was performed by flow cytometry and through osteogenic and adipogenic differentiation assays. Proliferative capacity of HMSCs on both matrices was investigated by mitochondrial dehydrogenase assays (WST) and tissue coverage scanning electron microscopy (SEM). The isolated HMSC differentiated into osteogenic and adipogenic cells authenticating the multipotentiality of the HMSCs. WST tests and the SEM images demonstrated that HPL was generally superior to FCS in promoting growth of seeded HMSCs. For all other tests HPL supported HMSCs at least equal to FCS. In conclusion, HPL is an effective growth factor to allow expansion of clinical-grade HMSCs on clinically-approved biomaterials for maxillofacial and oral implantology applications.No Full Tex
    corecore