3 research outputs found

    Optimising degradation and mechanical performance of additively manufactured biodegradable Fe–Mn scaffolds using design strategies based on triply periodic minimal surfaces

    Get PDF
    Additively manufactured lattices based on triply periodic minimal surfaces (TPMS) have attracted significant research interest from the medical industry due to their good mechanical and biomorphic properties. However, most studies have focussed on permanent metallic implants, while very little work has been undertaken on manufacturing biodegradable metal lattices. In this study, the mechanical properties and in vitro corrosion of selective laser melted Fe–35%Mn lattices based on gyroid, diamond and Schwarz primitive unit-cells were comprehensively evaluated to investigate the relationships between lattice type and implant performance. The gyroid-based lattices were the most readily processable scaffold design for controllable porosity and matching the CAD design. Mechanical properties were influenced by lattice geometry and pore volume. The Schwarz lattices were stronger and stiffer than other designs with the 42% porosity scaffold exhibiting the highest combination of strength and ductility, while diamond and gyroid based scaffolds had lower strength and stiffness and were more plastically compliant. The corrosion behaviour was strongly influenced by porosity, and moderately influenced by geometry and geometry-porosity interaction. At 60% porosity, the diamond lattice displayed the highest degradation rate due to an inherently high surface area-to-volume ratio. The biodegradable Fe–35Mn porous scaffolds showed a good cytocompatibility to primary human osteoblasts cells. Additive manufacturing of biodegradable Fe–Mn alloys employing TPMS lattice designs is a viable approach to optimise and customise the mechanical properties and degradation response of resorbable implants toward specific clinical applications for hard tissue orthopaedic repair

    Influence of Bioinspired Lithium-Doped Titanium Implants on Gingival Fibroblast Bioactivity and Biofilm Adhesion

    No full text
    Soft tissue integration (STI) at the transmucosal level around dental implants is crucial for the long-term success of dental implants. Surface modification of titanium dental implants could be an effective way to enhance peri-implant STI. The present study aimed to investigate the effect of bioinspired lithium (Li)-doped Ti surface on the behaviour of human gingival fibroblasts (HGFs) and oral biofilm in vitro. HGFs were cultured on various Ti surfaces—Li-doped Ti (Li_Ti), NaOH_Ti and micro-rough Ti (Control_Ti)—and were evaluated for viability, adhesion, extracellular matrix protein expression and cytokine secretion. Furthermore, single species bacteria (Staphylococcus aureus) and multi-species oral biofilms from saliva were cultured on each surface and assessed for viability and metabolic activity. The results show that both Li_Ti and NaOH_Ti significantly increased the proliferation of HGFs compared to the control. Fibroblast growth factor-2 (FGF-2) mRNA levels were significantly increased on Li_Ti and NaOH_Ti at day 7. Moreover, Li_Ti upregulated COL-I and fibronectin gene expression compared to the NaOH_Ti. A significant decrease in bacterial metabolic activity was detected for both the Li_Ti and NaOH_Ti surfaces. Together, these results suggest that bioinspired Li-doped Ti promotes HGF bioactivity while suppressing bacterial adhesion and growth. This is of clinical importance regarding STI improvement during the maintenance phase of the dental implant treatment

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore