188 research outputs found

    Enhancement of the polycation-mediated DNA uptake and cell transfection with Pluronic P85 block copolymer

    Get PDF
    AbstractPolyelectrolyte complexes formed between DNA and poly(N-ethyl-4-vinylpyridinium) cations were shown to effectively transfect mammalian cells [7]. This work suggests that the polycation-mediated uptake of the plasmid DNA and cell transfection are significantly enhanced when these complexes are administered simultaneously with a poly(ethylene oxide)block-poly(propylene oxide)-block-poly(ethylene oxide) copolymer, Pluronic P85. The uptake studies were performed using radioactively labeled pRSV CAT plasmid on NIH 3T3, MDCK, and Jurkat cell lines. The transfection was investigated by chloramphenicol acetyltransferase assay using 3T3 cells as a model. The effects reported may be useful for the enhancement of the polycation-mediated cell transfection

    A vascular endothelial growth factor high affinity receptor 1-specific peptide with antiangiogenic activity identified using a phage display peptide library.

    Get PDF
    Vascular endothelial growth factor (VEGF) is known to play a predominant role in tumor angiogenesis and metastasis formation that is mediated by its interactions with two tyrosine kinase receptors, VEGFRI (Flt-1) and VEGFRII (KDR). Inhibition of VEGF-dependent events in tumor tissues is known to enhance apoptosis and to suppress tumor growth. A novel peptide, SP5.2, which selectively binds Flt-1 and inhibits a broad range of VEGF-mediated events, was identified using a phage-display library screening. The fluorescein-labeled SP5.2 specifically bound to VEGF-stimulated primary human cerebral endothelial cells (HCECs), whereas non-stimulated HCECs, as well as human neuroblastoma cells (ShyY) did not show any interaction with the peptide. SP5.2 prevented proliferation of cultured primary human umbilical vein endothelial cells induced by recombinant human VEGF165 with an IC50 of 5 microm. SP5.2 was also shown to antagonize VEGF- and PLGF-induced, but not basic fibroblast growth factor-induced proliferation of HCECs. In contrast to "scrambled" peptide, SP5.2 was also found to selectively inhibit VEGF-stimulated migration of HCECs. The in vitro analysis of antiangiogenic activity of SP5.2 using a capillary-like tube formation assay showed that VEGF-induced angiogenesis of HCECs grown on Matrigel was completely inhibited in the presence of 10 microm SP5.2. Further studies demonstrated that SP5.2 prevented VEGF-induced permeability increase in HCECs monolayers. To explore whether SP5.2 can be used as a targeting agent, chemical and recombinant conjugates of SP5.2 with reporter proteins (peroxidase and beta-galactosidase) were produced. The resulting products showed significant increases (200-fold for SP5.2-beta-gal and 400-fold for SP5.2-peroxidase) in binding affinity to recombinant Flt-1 compared with the original synthetic SP5.2, suggesting that conjugate with therapeutic activity in nanomolar range could potentially be developed based on SP5.2 structure

    Effect of pluronic P85 on ATPase activity of drug efflux transporters

    Get PDF
    Purpose. Pluronic block copolymers are potent sensitizers of multidrug resistant (MDR) cancer cells. The sensitization effect by Pluronics is a result of two processes acting in concert: i) intracellular ATP depletion, and ii) inhibition of ATPase activity of drug efflux proteins. This work characterizes effects of Pluronic P85 on ATPase activities of Pgp, MRP1, and MRP2 drug efflux transport proteins and interaction of these proteins with their substrates, vinblastine, and leucotriene C4. Methods. Using membranes overexpressing Pgp, MRP1, and MRP2, the current study evaluates effects of Pluronic P85 (P85) on the kinetic parameters (V max, K m, V max/K m) of ATP hydrolysis by these ATPases. Results. The decreases in the maximal reaction rates (V max) and increases in apparent Michaelis constants (K m) for these transporters in the presence of various concentrations of P85 were observed. The mechanism of these effects may involve i) conformational changes of the transporter due to membrane fluidization and/or ii) nonspecific steric hindrance of the drug-binding sites by P85 chains embedded into cellular membranes. The extent of these alterations was increased in the row MRP1 < MRP2 ≪ Pgp. Conclusions. These data suggest that there are unifying pathways for the inhibition of Pgp and MRPs by the block copolymer. However, the effect of P85 on Pgp ATPase activity is considerably greater compared with the effects on MRP1 and MRP2 ATPases. This may be a reason for greater inhibitory effects of Pluronic in Pgp-compared with MRP-overexpressing cells

    Sensitization of Cells Overexpressing Multidrug-Resistant Proteins by Pluronic P85

    Get PDF
    Purpose. This study evaluated the chemosensitizing effects of Pluronic P85 (P85) on cells expressing multidrug resistance-associated proteins, MRP1 and MRP2. Methods. Cell models included MRP1- and MRP2-transfected MDCKII cells as well as doxorubicin-selected COR-L23/R cells overexpressing MRP1. Effects of P85 on cellular accumulation and cytotoxicity of vinblastine and doxorubicin were determined. Mechanistic studies characterized the effects of P85 on ATP and reduced glutathione (GSH) intracellular levels as well as MRP ATPase and glutathione-S-transferase (GST) activities in these cells. Results. Considerable increases of vinblastine and doxorubicin accumulation in the cells overexpressing MRP1 and MRP2 in the presence of P85 were observed, although no statistically significant changes in drug accumulation in the parental cells were found. P85 treatment caused an inhibition of MRP ATPase activity. Furthermore, P85 induced ATP depletion in these cells similar to that previously reported for Pgp-overexpressing cells. In addition, reduction of GSH intracellular levels and decrease of GST activity were observed following P85 treatment. Finally, significant enhancement of cytotoxicity of vinblastine and doxorubicin by P85 in MRP-overexpressing cells was demonstrated. Conclusions. This study suggests that P85 can sensitize cells overexpressing MRP1 and MRP2, which could be useful for chemotherapy of cancers that display these resistant mechanisms

    Micellar drug nanocarriers and biomembranes: how do they interact?

    Get PDF
    Pluronic based formulations are among the most successful nanomedicines and block-copolymer micelles including drugs that are undergoing phase I/II studies as anticancer agents. Using coarse-grained models, molecular dynamics simulations of large-scale systems, modeling Pluronic micelles interacting with DPPC lipid bilayers, on the μs timescale have been performed. Simulations show, in agreement with experiments, the release of Pluronic chains from the micelle to the bilayer. This release changes the size of the micelle. Moreover, the presence of drug molecules inside the core of the micelle has a strong influence on this process. The picture emerging from the simulations is that the micelle stability is a result of an interplay of drug–micelle core and block-copolymer–bilayer interactions. The equilibrium size of the drug vector shows a strong dependency on the hydrophobicity of the drug molecules embedded in the core of the micelle. In particular, the radius of the micelle shows an abrupt increase in a very narrow range of drug molecule hydrophobicity

    Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer

    Get PDF
    SP1049C is a novel anticancer agent containing doxorubicin and two nonionic pluronic block copolymers. In preclinical studies, SP1049C demonstrated increased efficacy compared to doxorubicin. The objectives of this first phase I study were to determine the toxicity profile, dose-limiting toxicity, maximum tolerated dose and pharmacokinetic profile of SP1049C, and to document any antitumour activity. The starting dose was 5 mg m−2 (doxorubicin content) as an intravenous infusion once every 3 weeks for up to six cycles. A total of 26 patients received 78 courses at seven dose levels. The dose-limiting toxicity was myelosuppression and DLT was reached at 90 mg m−2. The maximum tolerated dose was 70 mg m−2 and is recommended for future trials. The pharmacokinetic profile of SP1049C showed a slower clearance than has been reported for conventional doxorubicin. Evidence of antitumour activity was seen in some patients with advanced resistant solid tumours. Phase II trials with this agent are now warranted to further define its antitumour activity and safety profile

    High-throughput screening of excipients with a biological effect: a kinetic study on the effects of surfactants on efflux-mediated transport

    Get PDF
    Objective In this study, we develop and apply a high-throughput screening protocol to investigate the activity of non-ionic surfactants, with a broad range of hydrophilic–lipophilic balance values, against ABCB1-mediated efflux transport and ABCC2-mediated efflux transport. Methods Caco-2 cells were grown for 7 days in 96-well plates, then washed and incubated with the test materials for 2 h in the presence of 2.5 lM of either rhodamine 123 (R-123) or 5(6)-Carboxy-20,70 dichlorofluorescein diacetate as probes of ABCB1 and ABCC2, respectively. Key findings Of the surfactants tested, no activity against ABCC2 was detected and all surfactants showing efficacy against ABCB1 had a HLB value of 22 or below. Inhibition of ABCB1 was seen in the order of efficacy to be poloxamer 335 > poloxamer 40 > Crovol A-70 > Myrj S-40 > poloxamer 184 > poloxamer 182 > Etocas 40 > Tween 20 > Etocas 29 > Tween 80 > Acconon C-44 > Span 20. With regard to this inhibition, the distribution of hydrophilic regions is more important than the HLB value. Conclusion This work demonstrates a high-throughput protocol for detecting materials that can modulate ABCB1-mediated efflux. These surfactants could be exploited to improve oral delivery of drugs prone to efflux
    • …
    corecore