2 research outputs found

    Improved baculovirus vectors for transduction and gene expression in human pancreatic islet cells

    Get PDF
    Pancreatic islet transplantation is a promising treatment for type 1 diabetes mellitus offering improved glycaemic control by restoring insulin production. Improved human pancreatic islet isolation has led to higher islet transplantation success. However, as many as 50% of islets are lost after transplantation due to immune responses and cellular injury. Gene therapy presents a novel strategy to protect pancreatic islets for improved survival post-transplantation. To date, most of the vectors used in clinical trials and gene therapy studies have been derived from mammalian viruses such as adeno-associated or retrovirus. However, baculovirus BacMam vectors provide an attractive and safe alternative. Here a novel BacMam was constructed containing a frameshift mutation within fp25, which results in virus stocks with higher infectious titres. This improved in vitro transduction when compared to control BacMams. Additionally, incorporating a truncated vesicular stomatitis virus G protein increased transduction efficacy and production of EGFP and BCL2 in human kidney (HK-2) and pancreatic islet β cells (EndoC βH3). Lastly, we have shown that our optimized BacMam vector can deliver and express egfp in intact pancreatic islet cells from human cadaveric donors. These results confirm that BacMam vectors are a viable choice for providing delivery of transgenes to pancreatic islet cells

    Development of humanised antibodies for Crimean-Congo Haemorrhagic Fever virus: Comparison of hybridoma-based versus phage library techniques

    No full text
    Humanised antibodies targeting Crimean-Congo Haemorrhagic virus (CCHFV) are needed for the development and standardisation of serological assays. These assays are needed to address a shortfall in available tests that meet regulatory diagnostic standards and to aid surveillance activities to extend knowledge on the distribution of CCHFV. To generate a humanised monoclonal antibody against CCHFV, we have compared two methods: the traditional mouse hybridoma approach with subsequent sequencing and humanisation of antibodies versus a non-animal alternative using a human combinatorial antibody library (HuCAL). Our results demonstrated that the mouse hybridoma followed by humanisation protocol gave higher affinity antibodies. Whilst not yet able to demonstrate the generation of equivalent humanised antibodies without the use of animals, sequencing data enables the subsequent production of recombinant antibodies, thus providing a reduction in future animal usage for this application. Ultimately, our report provides information on development of a humanised standardised control, which can form an important positive control component of serological assays against CCHFV
    corecore