26 research outputs found
Development of a flight test maneuver autopilot for an F-15 aircraft
An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. This paper presents the development of control laws for a flight test maneuver autopilot for an F-15 aircraft. A linear quadratic regulator approach is used to develop the control laws within the context of flight test maneuver requirements by treating the maneuver as a finite time tracking problem with regulation of state rates. Results are presented to show the effectiveness of the controller in insuring acceptable aircraft performance during a maneuver
Development of control laws for a flight test maneuver autopilot for an F-15 aircraft
An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver
Digital adaptive flight controller development
A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented
Eigensystem synthesis for active flutter suppression on an oblique-wing aircraft
The application of the eigensystem synthesis technique to place the closed-loop eigenvalues and shape the closed-loop eigenvectors has not been practical for active flutter suppression, primarily because of the availability of only one control surface (aileron) for flutter suppression. The oblique-wing aircraft, because of its configuration, provides two independent surfaces (left and right ailerons), making the application of eigensystem synthesis practical. This paper presents the application of eigensystem synthesis using output feedback for the design of an active flutter suppression system for an oblique-wing aircraft. The results obtained are compared with those obtained by linear quadratic Gaussian techniques
Aeroelastic control of oblique-wing aircraft
The U.S. Navy and NASA are currently involved in the design and development of an unsymmetric-skew-wing aircraft capable of 65 deg wing sweep and flight at Mach 1.6. A generic skew-wing aircraft model was developed for 45 deg wing skew at a flight condition of Mach 0.70 and 3048 m altitude. At this flight condition the aircraft has a wing flutter mode. An active implementable control law was developed using the linear quadratic Gaussian design technique. A method of modal residualization was used to reduce the order of the controller used for flutter suppression
Decoupling control synthesis for an oblique-wing aircraft
Interest in oblique-wing aircraft has surfaced periodically since the 1940's. This concept offers some substantial aerodynamic performance advantages but also has significant aerodynamic and inertial cross-coupling between the aircraft longitudinal and lateral-directional axes. This paper presents a technique for synthesizing a decoupling controller while providing the desired stability augmentation. The proposed synthesis procedure uses the concept of a real model-following control system. Feedforward gains are selected on the assumption that perfect model-following conditions are satisfied. The feedback gains are obtained by using eigensystem assignment, and the aircraft is stabilized by using partial state feedback. The effectiveness of the control laws developed in achieving the desired decoupling is illustrated by application to linearized equations of motion of an oblique-wing aircraft for a given flight condition
Model-following control for an oblique-wing aircraft
A variable-skew oblique wing offers a substantial aerodynamic performance advantage for aircraft missions that require both high efficiency in subsonic flight and supersonic dash or cruise. The most obvious characteristic of the oblique-wing concept is the asymmetry associated with wing-skew angle which results in significant aerodynamic and inertial cross-coupling between the aircraft longitudinal and lateral-directional axes. A technique for synthesizing a decoupling controller while providing the desired stability augmentation. The proposed synthesis procedure uses the cncept of explicit model following. Linear quadratic optimization techniques are used to design the linear feedback system. The effectiveness of the control laws developed in achieving the desired decoupling is illustrated for a given flight condition by application to linearized equations of motion, and also to the nonlinear equations of six degrees of freedom of motion with nonlinear aerodynamic data
Selective photocatalytic oxidation of 4-substituted aromatic alcohols in water with rutile TiO2 prepared at room temperature
Home-prepared (HP) rutile TiO2 catalysts were prepared at room temperature by using H2O and TiCl4 in different ratios and without addition of additives. The catalysts were used for carrying out
the selective photocatalytic oxidation of 4-methoxybenzyl alcohol to 4-methoxybenzaldehyde in
aqueous suspension, free from any organic co-solvent. The selectivities showed by the home prepared catalysts were in the 45\u201374% range, up to four times higher than that of a commercial rutile TiO2 sample, the reaction rates being comparable. By using the most selective photocatalyst, the oxidation of benzyl, 4-methylbenzyl, and 4-nitrobenzyl alcohols was also carried out in order to investigate the in\ufb02uence of the substituent group on the oxidation rate and selectivity. The presence of an \u2013OCH3 group positively in\ufb02uenced the selectivity whereas a \u2013NO2 group showed to have a detrimental effect. The Hammett relationship effectively describes the in\ufb02uence of substituent group on the kinetic constant of partial oxidation of aromatic alcohols to aldehydes