174 research outputs found
Characterization of branch complexity by fractal analyses
9 páginas, 4 tablas, 3 figurasThe comparison between complexity in the sense of space occupancy (box-counting fractal dimension Dc and information dimension DI) and heterogeneity in the sense of space distribution (average evenness index J&d1; and evenness variation coefficient JCV) were investigated in mathematical fractal objects and natural branch structures. In general, increased fractal dimension was paired with low heterogeneity. Comparisons between branch architecture in Anthyllis cytisoides under different slope exposure and grazing impact revealed that branches were more complex and more homogeneously distributed for plants on northern exposures than southern, while grazing had no impact during a wet year. Developmental instability was also investigated by the statistical noise of the allometric relation between internode length and node order. In conclusion, our study demonstrated that fractal dimension of branch structure can be used to analyze the structural organization of plants, especially if we consider not only fractal dimension but also shoot distribution within the canopy (lacunarity). These indexes together with developmental instability analyses are good indicators of growth responses to the environment.Peer reviewe
Understanding herbivore-plant-soil feedbacks to improve grazing management on Mediterranean mountain grasslands
The surface of many European mountain grasslands is decreasing due to global change and extensive grazing stands out as a key tool for their conservation. Sound knowledge of grassland ecosystem functioning and its feedback processes is required to implement sustainable grazing management. This study aimed to understand the effect of different grazing intensities on herbivore-plant-soil feedbacks in Mediterranean mountain grasslands. We estimated spatial distribution of sheep grazing intensity using GPS technology in order to assess the effect of grazing pressure on vegetation and soil properties measured throughout the study area. Our results showed that grazing intensity ranged from 0.06 to 2.85 livestock units / ha, corresponding to a gradient of pasture utilisation rates varying from 2.38% to 45.60% of annual productivity from pasture. Increasing grazing pressure was associated with smaller relative cover and species richness of non-leguminous forbs, while the opposite trends were observed for graminoids. Forage had a greater concentration of N and smaller C:N ratio in more heavily grazed areas. Increasing grazing intensity was also associated with higher values of total soil N, NO3-, NH4+, soil organic carbon, microbial biomass C and activity of ß-glucosidase. Higher litter quality was the main factor explaining greater content of soil organic matter, which favoured both soil microbes and plant productivity. Grazing induced changes in the plant community triggered positive hervibore-plant-soil feedbacks, as they ultimately improved forage quality and productivity, which significantly influenced the pasture preference of free-ranging domestic grazers. Our work showed that grazing management aiming pasture utilisation rates of around 45% is critical in sustaining positive herbivore-plant-soil feedbacks and preserving or enhancing the whole ecosystem functioning in the Mediterranean mountain grasslands studied. © 2021 The Author
Plant-plant interactions scale up to produce vegetation spatial patterns: The influence of long- and short-term process
Vegetation spatial patterns emerge in response to feedback interactions between organisms and their environment, because of the redistribution of water and nutrients around the plant canopy or as a consequence of facilitation/competition interactions at the plant level, even in the absence of pre-existing substratum heterogeneities. It has been suggested that changes in vegetation spatial patterns are a signal of transition shift in ecosystems. Understanding the factors that lead to aggregated spatial patterns and control the transition to random distributions requires that environmental and species information is taken into account. In this study, we investigated the relative contributions of aridity (a long-term process), to which vegetation is adapted, and the area covered by bare soil (short-term process) to plant-plant associations and their contribution to aggregated spatial patterns. The study was conducted in a gradient of aridity ranging from that in subalpine grassland habitats in the Pyrenees and Sierra Nevada mountains to that in the semiarid steppes of Cabo de Gata and the middle Ebro Valley in Spain. We compared sites that differed in aridity and a geophysical feature (north- vs. south-facing slope). We observed that the relative contribution of aridity and bare soil to plant-plant facilitation and vegetation aggregation differed in subalpine and semiarid areas. Facilitation in subalpine habitats had a marked effect on aggregated spatial patterns, while aridity contributed to disruption of these patterns. Conversely, in semiarid habitats, the disruption of aggregated patterns was mainly promoted by an increase in bare soil area rather than in aridity. In semiarid habitats, the higher level of stress on south-facing slopes increased facilitation interactions relative to north-facing slopes, although this did not enhance the persistence of aggregated spatial patterns. We conclude that the use of aggregated spatial patterns as an indicator of ecosystem shift must distinguish and separately take account of long-term processes to which vegetation adapt, and short-term process
Nonpuerperal Breast Infection
Objective: We undertook a microbiological study of purulent specimens from women with symptomatic breast abscesses
Developmental Instability and Fitness in Periploca laevigata Experiencing Grazing Disturbance
10 páginas, 4 figuras, 4 tablas.We investigated the sensitivity of developmental instability measurements (leaf fluctuating asymmetry, floral radial asymmetry, and shoot translational asymmetry) to a long‐standing natural stress (grazing) in a palatable tannin‐producing shrub (Periploca laevigata Aiton). We also assessed the relationship between these measures of developmental instability and fitness components (growth and floral production). Developmental instability, measured by translational asymmetry, was the most accurate estimator of a plant’s condition and, consequently, environmental stress. Plants with less translational asymmetry grew more and produced more flowers. Plants from the medium‐grazed population were developmentally more stable, as estimated by translational and floral asymmetry, than either more heavily or more lightly grazed populations. Leaf fluctuating asymmetry was positively correlated with tannin concentration. The pattern of internode growth also responded to grazing impact. Plants under medium to heavy grazing pressure accelerated early growth and consequently escaped herbivory later in the season, i.e., at the beginning of the spring, when grazing activity was concentrated in herbaceous plants. Periploca laevigata accelerated growth and finished growing sooner than in the other grazing treatment. Thus, its annual growth was more mature and less palatable later in the season when grazers typically concentrate on shrubs. The reduction of developmental instability under medium grazing is interpreted as a direct effect of grazing and not as the release from competition.The work was realized under the Desertification Risk Assessment in Silvopastoral Mediterranean Ecosystems (DRASME) collaborative research project. DRASME is funded by the European Community under its International Cooperation with Developing Countries Program, contract number ERBIC18‐CT98‐0392. The support from this program is gratefully acknowledged. We are grateful to Dr. T. Navarro and Dr. M. Vrahnakis for critically reading the manuscript and making helpful suggestions. David Navas and Antonio Gonzalez assigned the taxonomic identification of each species, for which we are very grateful. We thank Rosa Jimenez Ortega, Antonio Parra Perez, David Navas, and Antonio Gonzalez for collaborating with us in the collection of data.Peer reviewe
Impact of mineral dust on short wave and long wave radiation: evaluation of different vertically resolved parameterization sin 1-D radiative transfer computations
Aerosol radiative properties are investigated in southeastern Spain during a dust event on 16–17 June 2013 in the framework of the ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) campaign. Particle optical and microphysical properties from ground-based sun/sky photometer and lidar measurements, as well as in situ measurements on board the SAFIRE ATR 42 French research aircraft, are used to create a set of different levels of input parameterizations, which feed the 1-D radiative transfer model (RTM) GAME (Global Atmospheric ModEl). We consider three datasets: (1) a first parameterization based on the retrievals by an advanced aerosol inversion code (GRASP; Generalized Retrieval of Aerosol and Surface Properties) applied to combined photometer and lidar data, (2) a parameterization based on the photometer columnar optical properties and vertically resolved lidar retrievals with the two-component Klett–Fernald algorithm, and (3) a parameterization based on vertically resolved optical and microphysical aerosol properties measured in situ by the aircraft instrumentation. Once retrieved, the outputs of the RTM in terms of both shortwave and longwave radiative fluxes are compared against ground and in situ airborne measurements. In addition, the outputs of the model in terms of the aerosol direct radiative effect are discussed with respect to the different input parameterizations. Results show that calculated atmospheric radiative fluxes differ no more than 7 % from the measured ones. The three parameterization datasets produce a cooling effect due to mineral dust both at the surface and the top of the atmosphere. Aerosol radiative effects with differences of up to 10 W m−2 in the shortwave spectral range (mostly due to differences in the aerosol optical depth) and 2 W m−2 for the longwave spectral range (mainly due to differences in the aerosol optical depth but also to the coarse mode radius used to calculate the radiative properties) are obtained when comparing the three parameterizations. The study reveals the complexity of parameterizing 1-D RTMs as sizing and characterizing the optical properties of mineral dust is challenging. The use of advanced remote sensing data and processing, in combination with closure studies on the optical and microphysical properties from in situ aircraft measurements when available, is recommended.This work is part of the ChArMEx project supported by CNRS-INSU, ADEME, Météo-France, and CEA in the framework of the multidisciplinary program MISTRALS (Mediterranean Integrated STudies at Regional And Local Scales; http://mistrals-home.org/, last access: 15 January 2018). Lidar measurements were supported by the ACTRIS (Aerosols, Clouds, and Trace Gases Research Infrastructure Network) Research Infrastructure Project funded by the European Union's Horizon 2020 research and innovation program under grant agreement no. 654109. The Barcelona team acknowledges the Spanish Ministry of Economy and Competitiveness (project TEC2015-63832-P) and EFRD (European Fund for Regional Development); the Department of Economy and Knowledge of the Catalan autonomous government (grant 2014 SGR 583) and the Unidad de Excelencia Maria de Maeztu (project MDM-2016-0600) financed by the Spanish Agencia Estatal de Investigación. The authors also thank the Spanish Ministry of Science, Innovation and Universities (ref. CGL2017-90884-REDT). This work was also supported by the Juan de la Cierva-Formación program (grant FJCI-2015-23904). Paola Formenti and Cyrielle Denjean acknowledge the support of the French National Research Agency (ANR) through the ADRIMED program (contract ANR-11-BS56-0006)
Long range correlation in cosmic microwave background radiation
We investigate the statistical anisotropy and Gaussianity of temperature
fluctuations of Cosmic Microwave Background radiation (CMB) data from {\it
Wilkinson Microwave Anisotropy Probe} survey, using the multifractal detrended
fluctuation analysis, rescaled range and scaled windowed variance methods. The
multifractal detrended fluctuation analysis shows that CMB fluctuations has a
long range correlation function with a multifractal behavior. By comparing the
shuffled and surrogate series of CMB data, we conclude that the multifractality
nature of temperature fluctuation of CMB is mainly due to the long-range
correlations and the map is consistent with a Gaussian distribution.Comment: 10 pages, 7 figures, V2: Added comments, references and major
correction
Quantifying traffic, biomass burning and secondary source contributions to atmospheric particle number concentrations at urban and suburban sites
In this study, we propose a new approach to determine the contributions of primary vehicle exhaust (N-1(ff)), primary biomass burning (N-1(bb)) and secondary (N-2) particles to mode segregated particle number concentrations. We used simultaneous measurements of aerosol size distribution in the 12-600 nm size range and black carbon (BC) concentration obtained during winter period at urban and suburban sites influenced by biomass burning (BB) emissions. As expected, larger aerosol number concentrations in the 12-25 and 25-100 nm size ranges are observed at the urban site compared to the suburban site. However, similar concentrations of BC are observed at both sites due to the larger contribution of BB particles to the observed BC at suburban (34%) in comparison to urban site (23%). Due to this influence of BB emissions in our study area, the application of the Rodriguez and Cuevas (2007) method, which was developed for areas mainly influenced by traffic emissions, leads to an overestimation of the primary vehicle exhaust particles concentrations by 18% and 26% in urban and suburban sites, respectively, as compared to our new proposed approach. The results show that (1) N-2 is the main contributor in all size ranges at both sites, (2) N-1(ff) is the main contributor to primary particles (>70%) in all size ranges at both sites and (3) N-1(bb) contributes significantly to the primary particles in the 25-100 and 100-600 nm size ranges at the suburban (24% and 28%, respectively) and urban (13% and 20%, respectively) sites. At urban site, the N-1(ff) contribution shows a slight increase with the increase of total particle concentration, reaching a contribution of up to 65% at high ambient aerosol concentrations. New particle loination events are an important aerosol source during summer noon hours but, on average, these events do not implicate a considerable contribution to urban particles. (C) 2021 Elsevier B.V. All rights reserved.Peer reviewe
Long-range correlation and multifractality in Bach's Inventions pitches
We show that it can be considered some of Bach pitches series as a stochastic
process with scaling behavior. Using multifractal deterend fluctuation analysis
(MF-DFA) method, frequency series of Bach pitches have been analyzed. In this
view we find same second moment exponents (after double profiling) in ranges
(1.7-1.8) in his works. Comparing MF-DFA results of original series to those
for shuffled and surrogate series we can distinguish multifractality due to
long-range correlations and a broad probability density function. Finally we
determine the scaling exponents and singularity spectrum. We conclude fat tail
has more effect in its multifractality nature than long-range correlations.Comment: 18 page, 6 figures, to appear in JSTA
Characterization of Sleep Stages by Correlations of Heartbeat Increments
We study correlation properties of the magnitude and the sign of the
increments in the time intervals between successive heartbeats during light
sleep, deep sleep, and REM sleep using the detrended fluctuation analysis
method. We find short-range anticorrelations in the sign time series, which are
strong during deep sleep, weaker during light sleep and even weaker during REM
sleep. In contrast, we find long-range positive correlations in the magnitude
time series, which are strong during REM sleep and weaker during light sleep.
We observe uncorrelated behavior for the magnitude during deep sleep. Since the
magnitude series relates to the nonlinear properties of the original time
series, while the signs series relates to the linear properties, our findings
suggest that the nonlinear properties of the heartbeat dynamics are more
pronounced during REM sleep. Thus, the sign and the magnitude series provide
information which is useful in distinguishing between the sleep stages.Comment: 7 pages, 4 figures, revte
- …