2 research outputs found

    Passive RFID Module with LSTM Recurrent Neural Network Activity Classification Algorithm for Ambient Assisted Living

    Get PDF
    YesHuman activity recognition from sensor data is a critical research topic to achieve remote health monitoring and ambient assisted living (AAL). In AAL, sensors are integrated into conventional objects aimed to support targets capabilities through digital environments that are sensitive, responsive and adaptive to human activities. Emerging technological paradigms to support AAL within the home or community setting offers people the prospect of a more individually focused care and improved quality of living. In the present work, an ambient human activity classification framework that augments information from the received signal strength indicator (RSSI) of passive RFID tags to obtain detailed activity profiling is proposed. Key indices of position, orientation, mobility, and degree of activities which are critical to guide reliable clinical management decisions using 4 volunteers are employed to simulate the research objective. A two-layer, fully connected sequence long short-term memory recurrent neural network model (LSTM RNN) is employed. The LSTM RNN model extracts the feature of RSS from the sensor data and classifies the sampled activities using SoftMax. The performance of the LSTM model is evaluated for different data size and the hyper-parameters of the RNN are adjusted to optimal states, which results in an accuracy of 98.18%. The proposed framework suits well for smart health and smart homes which offers pervasive sensing environment for the elderly, persons with disability and chronic illness

    An indoor path loss prediction model using wall correction factors for wireless local area network and 5G indoor networks

    Get PDF
    A modified indoor path loss prediction model is presented, namely, effective wall loss model. The modified model is compared to other indoor path loss prediction models using simulation data and real-time measurements. Different operating frequencies and antenna polarizations are considered to verify the observations. In the simulation part, effective wall loss model shows the best performance among other models as it outperforms 2 times the dual-slope model, which is the second best performance. Similar observations were recorded from the experimental results. Linear attenuation and one-slope models have similar behavior, the two models parameters show dependency on operating frequency and antenna polarization
    corecore