4 research outputs found

    Deep Active Learning for Automatic Mitotic Cell Detection on HEp-2 Specimen Medical Images

    Get PDF
    Identifying Human Epithelial Type 2 (HEp-2) mitotic cells is a crucial procedure in anti-nuclear antibodies (ANAs) testing, which is the standard protocol for detecting connective tissue diseases (CTD). Due to the low throughput and labor-subjectivity of the ANAs' manual screening test, there is a need to develop a reliable HEp-2 computer-aided diagnosis (CAD) system. The automatic detection of mitotic cells from the microscopic HEp-2 specimen images is an essential step to support the diagnosis process and enhance the throughput of this test. This work proposes a deep active learning (DAL) approach to overcoming the cell labeling challenge. Moreover, deep learning detectors are tailored to automatically identify the mitotic cells directly in the entire microscopic HEp-2 specimen images, avoiding the segmentation step. The proposed framework is validated using the I3A Task-2 dataset over 5-fold cross-validation trials. Using the YOLO predictor, promising mitotic cell prediction results are achieved with an average of 90.011% recall, 88.307% precision, and 81.531% mAP. Whereas, average scores of 86.986% recall, 85.282% precision, and 78.506% mAP are obtained using the Faster R-CNN predictor. Employing the DAL method over four labeling rounds effectively enhances the accuracy of the data annotation, and hence, improves the prediction performance. The proposed framework could be practically applicable to support medical personnel in making rapid and accurate decisions about the mitotic cells' existence

    Accurate Detection of Alzheimer’s Disease Using Lightweight Deep Learning Model on MRI Data

    No full text
    Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and aberrant protein deposition in the brain. Therefore, the early detection of AD is crucial for the development of effective treatments and interventions, as the disease is more responsive to treatment in its early stages. It is worth mentioning that deep learning techniques have been successfully applied in recent years to a wide range of medical imaging tasks, including the detection of AD. These techniques have the ability to automatically learn and extract features from large datasets, making them well suited for the analysis of complex medical images. In this paper, we propose an improved lightweight deep learning model for the accurate detection of AD from magnetic resonance imaging (MRI) images. Our proposed model achieves high detection performance without the need for deeper layers and eliminates the use of traditional methods such as feature extraction and classification by combining them all into one stage. Furthermore, our proposed method consists of only seven layers, making the system less complex than other previous deep models and less time-consuming to process. We evaluate our proposed model using a publicly available Kaggle dataset, which contains a large number of records in a small dataset size of only 36 Megabytes. Our model achieved an overall accuracy of 99.22% for binary classification and 95.93% for multi-classification tasks, which outperformed other previous models. Our study is the first to combine all methods used in the publicly available Kaggle dataset for AD detection, enabling researchers to work on a dataset with new challenges. Our findings show the effectiveness of our lightweight deep learning framework to achieve high accuracy in the classification of AD

    A Clinical Decision Support System for Edge/Cloud ICU Readmission Model Based on Particle Swarm Optimization, Ensemble Machine Learning, and Explainable Artificial Intelligence

    No full text
    ICU readmission is usually associated with an increased number of hospital death. Predicting readmission helps to reduce such risks by avoiding early discharge, providing appropriate intervention, and planning for patient placement after ICU discharge. Unfortunately, ICU scores such as the simplified acute physiology score (SAPS) and Acute Physiology and Chronic Health (APACHE) could help predict mortality or evaluate illness severity. Still, it is ineffective in predicting ICU readmission. This study introduces a clinical monitoring fog-computing-based system for remote prognosis and monitoring of intensive care patients. This proposed monitoring system uses the advantages of machine learning (ML) approaches for generating a real-time alert signal to doctors for supplying e-healthcare, accelerating decision-making, and monitoring and controlling health systems. The proposed system includes three main layers. First, the data acquisition layer, in which we collect the vital signs and lab tests of the patient’s health conditions in real-time. Then, the fog computing layer processes. The results are then sent to the cloud layer, which offers sizable storage space for patient healthcare. Demographic data, lab tests, and vital signs are aggregated from the MIMIC III dataset for 10,465 patients. Feature selection methods: Genetic algorithm (GA) and practical swarm optimization (PSO) are used to choose the optimal feature subset from detests. Moreover, Different traditional ML models, ensemble learning models, and the proposed stacking models are applied to full features and selected features to predict readmission after 30 days of ICU discharge. The proposed stacking models recorded the highest performance compared to other models. The proposed stacking ensemble model with selected features by POS achieved promising results (accuracy = 98.42, precision = 98.42, recall = 98.42, and F1-Score = 98.42), compared to full features and selected features. We also, provide model explanations to ensure efficiency, effectiveness, and trust in the developed model through local and global explanations

    An Ontology-Based Approach to Reduce the Negative Impact of Code Smells in Software Development Projects

    No full text
    The quality of software systems may be seriously impacted by specific types of source code anomalies. For example, poor programming practices result in Code Smells (CSs), which are a specific type of source code anomalies. They lead to architectural problems that consequently impact some significant software quality attributes, such as maintainability, portability, and reuse. To reduce the risk of introducing CSs and alleviate their consequences, the knowledge and skills of developers and architects is essential. On the other hand, ontologies, which are an artificial intelligence technique, have been used as a solution to deal with different software engineering challenges. Hence, the aim of this paper is to describe an ontological approach to representing and analyzing code smells. Since ontologies are a formal language based on description logics, this approach may contribute to formally analyzing the information about code smells, for example, to detect inconsistencies or infer new knowledge with the support of a reasoner. In addition, this proposal may support the training of software developers by providing the most relevant information on code smells. This ontology can also be a means of representing the knowledge on CSs from different sources (documents in natural language, relational databases, HTML documents, etc.). Therefore, it could be a valuable knowledge base to support the struggle of software developers and architects either to avoid CSs or to detect and remove them. The ontology was developed following a sound methodology. The well-known tool Protégé was used to manage the ontology and it was validated by using different techniques. An experiment was conducted to demonstrate the applicability of the ontology and evaluate its impact on speeding up the analysis of CSs
    corecore