7 research outputs found

    Modular Single-Stage Three-Phase Flyback Differential Inverter for Medium/High-Power Grid Integrated Applications

    No full text
    This paper proposes a single-stage three-phase modular flyback differential inverter (MFBDI) for medium/high power solar PV grid-integrated applications. The proposed inverter structure consists of parallel modules of flyback DC-DC converters based on the required power level. The MFBDI offers many features for renewable energy applications, such as reduced components, single-stage power processing, high-power density, voltage-boosting property, improved footprint, flexibility with modular extension capability, and galvanic isolation. The proposed inverter has been modelled, designed, and scaled up to the required application rating. A new mathematical model of the proposed MFBDI is presented and analyzed with a time-varying duty-cycle, wide-range of frequency variation, and power balancing in order to display its grid current harmonic orders for grid-tied applications. In addition, an LPF-based harmonic compensation strategy is used for second-order harmonic component (SOHC) compensation. With the help of the compensation technique, the grid current THD is reduced from 36% to 4.6% by diminishing the SOHC from 51% to 0.8%. Moreover, the SOHC compensation technique eliminates third-order harmonic components from the DC input current. In addition, a 15% parameters mismatch has been applied between the flyback parallel modules to confirm the modular operation of the proposed MFBDI under modules divergence. In addition, SiC MOSFETs are used for inverter switches implementation, which decrease the inverter switching losses at high-switching frequency. The proposed MFBDI is verified by using three flyback parallel modules/phase using PSIM/Simulink software, with a rating of 5 kW, 200 V, and 50 kHz switching frequency, as well as experimental environments

    An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter

    No full text
    Central-type photovoltaic (PV) inverters are used in most large-scale standalone and grid-tied PV applications due to the inverter’s high efficiency and low-cost per kW generated. The perturbation and observation (P&O) and incremental conductance (IncCond) have become the most common techniques for maximum power point tracking (MPPT) strategies of PV/wind generation systems. Typically, the MPPT technique is applied in a two-stage operation; the first stage tracks the MPP and boosts the PV voltage to a certain level that complies with grid voltage, whereas the second stage represents the inversion stage that ties the PV system to the grid. Therefore, these common configurations increase the system size and cost as well as reduce its overall footprint. As a result, this paper applies two IncCond MPPT techniques on a proposed single-stage three-phase differential-flyback inverter (DFI). In addition, the three-phase DFI is analyzed for grid current negative-sequence harmonic compensation (NSHC). The proposed system efficiently provides a MPPT of the PV system and voltage boosting property of the DC-AC inverter in a single-stage operation. Moreover, the MPPT technique has been applied through the DFI using the conventional and modified IncCond tracking strategies. Furthermore, the system is validated for the grid-tied operation with the negative-sequence harmonic compensation strategy using computer-based simulation and is tested under uniform, step-change, as well as fast-changing irradiance profiles. The average efficiencies of the proposed system, considering the conventional and modified IncCond MPPT techniques, are 94.16% and 96.4% with tracking responses of 0.062 and 0.035 s and maximum overshoot of 46.15% and 15.38%, respectively

    An Efficient MPPT Technique-Based Single-Stage Incremental Conductance for Integrated PV Systems Considering Flyback Central-Type PV Inverter

    No full text
    Central-type photovoltaic (PV) inverters are used in most large-scale standalone and grid-tied PV applications due to the inverter’s high efficiency and low-cost per kW generated. The perturbation and observation (P&O) and incremental conductance (IncCond) have become the most common techniques for maximum power point tracking (MPPT) strategies of PV/wind generation systems. Typically, the MPPT technique is applied in a two-stage operation; the first stage tracks the MPP and boosts the PV voltage to a certain level that complies with grid voltage, whereas the second stage represents the inversion stage that ties the PV system to the grid. Therefore, these common configurations increase the system size and cost as well as reduce its overall footprint. As a result, this paper applies two IncCond MPPT techniques on a proposed single-stage three-phase differential-flyback inverter (DFI). In addition, the three-phase DFI is analyzed for grid current negative-sequence harmonic compensation (NSHC). The proposed system efficiently provides a MPPT of the PV system and voltage boosting property of the DC-AC inverter in a single-stage operation. Moreover, the MPPT technique has been applied through the DFI using the conventional and modified IncCond tracking strategies. Furthermore, the system is validated for the grid-tied operation with the negative-sequence harmonic compensation strategy using computer-based simulation and is tested under uniform, step-change, as well as fast-changing irradiance profiles. The average efficiencies of the proposed system, considering the conventional and modified IncCond MPPT techniques, are 94.16% and 96.4% with tracking responses of 0.062 and 0.035 s and maximum overshoot of 46.15% and 15.38%, respectively

    An Enhanced P&O MPPT Algorithm With Concise Search Area for Grid-Tied PV Systems

    No full text
    Due to improved efficiency of solar photovoltaic (PV) systems, this article proposes a modified perturb and observe (MPO) maximum power point tracking (MPPT) algorithm. The MPO algorithm in question adopts a tracking approach that divides the power-voltage curve into four operational regions based on the estimated open-circuit voltage. Additionally, this algorithm enhances the maximum power point (MPP) tracking method by reducing unnecessary step-size calculations, focusing only on a 10% Section of the power-voltage curve that contains the MPP. Consequently, the two regions located far from the MPP, below 90% of the power-voltage range, utilize a large fixed step-size to ensure swift tracking speed. Furthermore, in the regions close to the MPP, the remaining areas employ a similar tracking strategy as the adaptive P&O algorithm, aiming to achieve minimal steady-state oscillations around the optimal MPP. The performance of the proposed MPO algorithm is demonstrated by validating it against sinusoidal, ramp irradiance, and one-day (10 hr.) irradiance profiles using MATLAB/SIMULINK. The simulation results confirm that the proposed algorithm outperforms recently published techniques in terms of convergence speed, achieving the shortest time of 15 ms, and slightly higher tracking efficiency of the PV system under uniform irradiation, reaching 99.8%
    corecore