5 research outputs found

    Tentatively Identified (UPLC/T-TOF–MS/MS) Compounds in the Extract of Saussurea costus Roots Exhibit In Vivo Hepatoprotection via Modulation of HNF-1α, Sirtuin-1, C/ebpα, miRNA-34a and miRNA-223

    No full text
    Saussurea costus is a plant traditionally used for the treatment of several ailments. Our study accomplished the UPLC/T-TOF–MS/MS analysis of a methanol extract of Saussurea costus roots (MESC), in addition to lipoidal matter determination and assessment of its in vivo hepatoprotective activity. In this study, we were able to identify the major metabolites in MESC rather than the previously known isolated compounds, improving our knowledge of its chemical constituents. The flavones apigenin, acacetin, baicalein, luteolin, and diosmetin, and the flavonol aglycones quercetin, kaempferol, isorhamnetin, gossypetin, and myricetin and/or their glycosides and glucuronic derivatives were the major identified compounds. The hepatoprotective activity of MESC was evaluated by measuring catalase activity using UV spectrophotometry, inflammatory cytokines and apoptotic markers using ELISA techniques, and genetic markers using PCR. Paracetamol toxicity caused a significant increase in plasma caspase 2, cytokeratin 18 (CK18), liver tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), miRNA-34a, and miRNA-223, as well as a significant decrease in liver catalase (CAT) activity and in the levels of liver nuclear factor 1α (HNF-1α), sirtuin-1, and C/ebpα. Oral pretreatment with MESC (200 mg/kg) showed a significant decrease in caspase 2, CK18, TNF-α, IL-6 and a significant increase in liver CAT activity. MESC decreased the levels of liver miRNA-34a and miRNA-223 and induced HNF-1α, sirtuin-1, and C/ebpα gene expression. The histological examination showed a significant normalization in rats pretreated with MESC. Our findings showed that Saussurea costus may exert a potent hepatoprotective activity through the modulation of the expression of cellular cytokines, miRNA-34a, and miRNA-223

    Fabrication of Anti-HSV-1 Curcumin Stabilized Nanostructured Proniosomal Gel: Molecular Docking Studies on Thymidine Kinase Proteins

    No full text
    Curcumin is a dietary compound with accrued evidence of antiviral activity. Poor solubility and permeation renders curcumin a good applicant for incorporation into proniosomes. The intent of this study was to formulate curcumin proniosomal gel for topical application and the evaluation of its in-vitro, ex-vivo activities against Herpes Simplex virus type 1 (HSV-1), as well as molecular docking studies on HSV-1 thymidine kinase proteins. Coacervation phase separation tactic, using 23 full factorial design, was used in the preparation of different proniosomes. Cytotoxicity of the selected formulae (F4 and F8) was evaluated on the Vero cell line. Optimal formulae (F4 and F8) showed entrapment efficiency of 97.15 ± 2.47% and 95.85 ± 2.9%, vesicle size of 173.7 ± 2.26 nm and 206.15 ± 4.17 nm and percentages curcumin released after 3 h of 51.9 ± 1.4% and 50.5 ± 1.1%, respectively. Ex-vivo permeation studies demonstrated that the optimal formulae markedly improved the dermal curcumin delivery. Curcumin proniosomal gel formulae exhibited 85.4% reduction of HSV-1 replication. The ability of curcumin to interact with the key amino acids in the enzyme binding sites of 1KI7, 1KI4, and 1E2P, as indicated by its docking pattern, rationalized its observed activity. Therefore, curcumin proniosomes could be considered as a successful topical delivery system for the treatment of HSV-1

    Enhancement of Antimicrobial and Antiproliferative Activities of Standardized Frankincense Extract Using Optimized Self-Nanoemulsifying Delivery System

    No full text
    Boswellic acids (BAs) are the main bioactive compounds of frankincense, a natural resin obtained from the genus Boswellia. This study aimed to develop a self-nanoemulsifying delivery system (SNEDS) to improve the antimicrobial and antiproliferative activities of standardized frankincense extract (Fr-extract). Fr-extract was standardized, and BA content was quantified using the developed HPLC-UV method. Screening studies of excipients followed by formula optimization using a mixture simplex lattice design was employed. The optimized Fr-SENDS formulation was characterized. Furthermore, microbiological and antiproliferative assessments of the standardized Fr-extract and Fr-SNEDS were evaluated. Quantification demonstrated that the major constituent is 11-keto-boswellic acid (KBA) (16.25%) among BA content (44.96%). The optimized Fr-SENDS (composed of 5% CapryolTM 90, 48.7% Gelucire® 44/14 and 46.3% ethanol) showed spherical nanosized dispersions with DS, PDI, and zeta potential of 17.9 nm, 0.2, and −14.5 mV, respectively. Fr-SNEDS exhibited lower MIC and MBC values compared with Fr-extract against pathogens conjugated with lung cancer and was comparable to reference antimicrobials. Fr-SNEDS showed superior antiproliferative activity over Fr-extract, with IC50 values of 20.49 and 109.5 μg mL−1, respectively. In conclusion, the optimized Fr-SNEDS could be easily developed and manufactured at a low cost and the in vitro results support its use as a potential adjuvant oral therapy for lung cancer. Further in vivo studies could be continued to assess the therapeutic efficiency of the prepared system

    A New Polyoxygenated Flavonol Gossypetin-3-O-β-d-Robinobioside from Caesalpinia gilliesii (Hook.) D. Dietr. and In Vivo Hepatoprotective, Anti-Inflammatory, and Anti-Ulcer Activities of the Leaf Methanol Extract

    No full text
    A hitherto unknown polyoxygenated flavonol robinobioside (gossypetin-3-O-β-d-robinobioside) was isolated from the leaves of Caesalpinia gilliesii along with thirteen known phenolic secondary metabolites. The isolated compounds were characterized using spectroscopic analysis, including 1D and 2D NMR and mass spectrometry (MS) analyses. The extract reduced the level of liver damage in CCl4-induced liver injury in rats. A decrease of the liver biomarkers—aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and an increase of total antioxidant capacity (TAC) levels—were observed similar to the liver protecting drug silymarin. In addition, the extract showed promising activity against carrageenan-induced paw edema in rats and protected their stomachs against ethanol-induced gastric ulcers in a concentration dependent fashion. The observed activities could be attributed to the high content of antioxidant polyphenols. Our results suggest that the C. gilliesii has the capacity to scavenge free radicals and can protect against oxidative stress, and liver and stomach injury

    Possible Implication of Nrf2, PPAR-γ and MAPKs Signaling in the Protective Role of Mangiferin against Renal Ischemia/Reperfusion in Rats

    No full text
    Mangiferin (Mang) is a known glucosylxanthone that has proven its shielding effect against ischemia/reperfusion (Is/R). However, its full underlying mechanistic perspective against renal Is/R induced lesions is not fully revealed. Consequently, the purpose of this study is to track further non-investigated modulatory signals of Mang against the renal Is/R model involving nuclear factor erythroid 2-related factor (Nrf)2/heme oxygenase (HO)-1, peroxisome proliferator-activated receptor (PPAR)-γ/nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) signaling. To ratify our aim, Mang was administrated (20 mg/kg, i.p for seven days) before the induction of bilateral Is/R. Mechanistic maneuver revealed that Mang balanced oxidative state via increasing the expression of the antioxidant Nrf2/HO-1 cue with subsequent enhancement of GSH besides MDA lessening. Additionally, Mang enhanced PPAR-γ mRNA expression and declined p-p38 MAPK and p-JNK expression with concomitant NF-κB downsizing leading to iNOS/NOx and TNF-α rebating. Furthermore, the Mang anti-apoptotic trait was affirmed by enriching Bcl-2 expression as well as decreasing Bax and caspase-3 expression. All these potentials were in the line with the molecular docking results and the improved histopathological findings and renal function biomarkers. Consequently, Mang provided plausible protective mechanisms against renal Is/R-related events, possibly by amending oxidative status, inflammatory mediators, and apoptotic cell death through the involvement of Nrf2, PPAR-γ, MAPK, JNK, and NF-κB signaling
    corecore