6 research outputs found

    A Prediction Model to Help with Oncologic Mediastinal Evaluation for Radiation: HOMER

    No full text
    RATIONALE: When stereotactic ablative radiotherapy (SABR) is an option for non-small cell lung cancer (NSCLC) patients, distinguishing between N0, N1 and N2 or N3 (N2|3) disease is important. OBJECTIVES: To develop a prediction model for estimating the probability of N0, N1, and N2|3 disease. METHODS: Consecutive patients with clinical-radiographic stage T1-3/N0-3/M0 NSCLC that underwent endobronchial ultrasound-guided staging from a single center were included. Multivariate ordinal logistic regression analysis was used to predict the presence of N0, N1 or N2|3 disease. Temporal validation used consecutive patients from three years later at the same center. External validation used three other hospitals. RESULTS: In the model development cohort (n=633), younger age, central location, adenocarcinoma and higher PET-CT nodal stage were associated with a higher probability of having advanced nodal disease. Area under the receiver operating characteristic curves (AUC) were 0.84 and 0.86 for predicting N1 or higher (vs. N0) disease and N2|3 (vs. N0|1) disease respectively. Model fit was acceptable (Hosmer-Lemeshow p=0.960; Brier score 0.36). In the temporal validation cohort (n=473) AUCs were 0.86 and 0.88. Model fit was acceptable (Hosmer-Lemeshow p=0.172; Brier score 0.30). In the external validation cohort (n=722), AUCs were 0.86 and 0.88, but required calibration (Hosmer-Lemeshow p CONCLUSIONS: This prediction model can estimate the probability of N0, N1 and N2|3 disease in NSCLC patients. The model has the potential to facilitate decision-making in NSCLC patients when SABR is an option

    Predicting Lymph Node Metastasis in Non-small Cell Lung Cancer: Prospective External and Temporal Validation of the HAL and HOMER Models

    No full text
    BACKGROUND: Two models, the Help with the Assessment of Adenopathy in Lung cancer (HAL) and Help with Oncologic Mediastinal Evaluation for Radiation (HOMER), were recently developed to estimate the probability of nodal disease in patients with non-small cell lung cancer (NSCLC) as determined by endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA). The objective of this study was to prospectively externally validate both models at multiple centers. RESEARCH QUESTION: Are the HAL and HOMER models valid across multiple centers? STUDY DESIGN AND METHODS: This multicenter prospective observational cohort study enrolled consecutive patients with PET-CT clinical-radiographic stages T1-3, N0-3, M0 NSCLC undergoing EBUS-TBNA staging. HOMER was used to predict the probability of N0 vs N1 vs N2 or N3 (N2|3) disease, and HAL was used to predict the probability of N2|3 (vs N0 or N1) disease. Model discrimination was assessed using the area under the receiver operating characteristics curve (ROC-AUC), and calibration was assessed using the Brier score, calibration plots, and the Hosmer-Lemeshow test. RESULTS: Thirteen centers enrolled 1,799 patients. HAL and HOMER demonstrated good discrimination: HAL ROC-AUC = 0.873 (95%CI, 0.856-0.891) and HOMER ROC-AUC = 0.837 (95%CI, 0.814-0.859) for predicting N1 disease or higher (N1|2|3) and 0.876 (95%CI, 0.855-0.897) for predicting N2|3 disease. Brier scores were 0.117 and 0.349, respectively. Calibration plots demonstrated good calibration for both models. For HAL, the difference between forecast and observed probability of N2|3 disease was +0.012; for HOMER, the difference for N1|2|3 was -0.018 and for N2|3 was +0.002. The Hosmer-Lemeshow test was significant for both models (P = .034 and .002), indicating a small but statistically significant calibration error. INTERPRETATION: HAL and HOMER demonstrated good discrimination and calibration in multiple centers. Although calibration error was present, the magnitude of the error is small, such that the models are informative

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore