32 research outputs found

    State of Refactoring Adoption: Better Understanding Developer Perception of Refactoring

    Full text link
    We aim to explore how developers document their refactoring activities during the software life cycle. We call such activity Self-Affirmed Refactoring (SAR), which indicates developers' documentation of their refactoring activities. SAR is crucial in understanding various aspects of refactoring, including the motivation, procedure, and consequences of the performed code change. After that, we propose an approach to identify whether a commit describes developer-related refactoring events to classify them according to the refactoring common quality improvement categories. To complement this goal, we aim to reveal insights into how reviewers decide to accept or reject a submitted refactoring request and what makes such a review challenging.Our SAR taxonomy and model can work with refactoring detectors to report any early inconsistency between refactoring types and their documentation. They can serve as a solid background for various empirical investigations. Our survey with code reviewers has revealed several difficulties related to understanding the refactoring intent and implications on the functional and non-functional aspects of the software. In light of our findings from the industrial case study, we recommended a procedure to properly document refactoring activities, as part of our survey feedback.Comment: arXiv admin note: text overlap with arXiv:2010.13890, arXiv:2102.05201, arXiv:2009.0927

    State of Refactoring Adoption: Towards Better Understanding Developer Perception of Refactoring

    Get PDF
    Context: Refactoring is the art of improving the structural design of a software system without altering its external behavior. Today, refactoring has become a well-established and disciplined software engineering practice that has attracted a significant amount of research presuming that refactoring is primarily motivated by the need to improve system structures. However, recent studies have shown that developers may incorporate refactoring strategies in other development-related activities that go beyond improving the design especially with the emerging challenges in contemporary software engineering. Unfortunately, these studies are limited to developer interviews and a reduced set of projects. Objective: We aim at exploring how developers document their refactoring activities during the software life cycle. We call such activity Self-Affirmed Refactoring (SAR), which is an indication of the developer-related refactoring events in the commit messages. After that, we propose an approach to identify whether a commit describes developer-related refactoring events, to classify them according to the refactoring common quality improvement categories. To complement this goal, we aim to reveal insights into how reviewers develop a decision about accepting or rejecting a submitted refactoring request, what makes such review challenging, and how to the efficiency of refactoring code review. Method: Our empirically driven study follows a mixture of qualitative and quantitative methods. We text mine refactoring-related documentation, then we develop a refactoring taxonomy, and automatically classify a large set of commits containing refactoring activities, and identify, among the various quality models presented in the literature, the ones that are more in-line with the developer\u27s vision of quality optimization, when they explicitly mention that they are refactoring to improve them to obtain an enhanced understanding of the motivation behind refactoring. After that, we performed an industrial case study with professional developers at Xerox to study the motivations, documentation practices, challenges, verification, and implications of refactoring activities during code review. Result: We introduced SAR taxonomy on how developers document their refactoring strategies in commit messages and proposed a SAR model to automate the detection of refactoring. Our survey with code reviewers has revealed several difficulties related to understanding the refactoring intent and implications on the functional and non-functional aspects of the software. Conclusion: Our SAR taxonomy and model, can work in conjunction with refactoring detectors, to report any early inconsistency between refactoring types and their documentation and can serve as a solid background for various empirical investigations. In light of our findings of the industrial case study, we recommended a procedure to properly document refactoring activities, as part of our survey feedback

    How We Refactor and How We Mine it ? A Large Scale Study on Refactoring Activities in Open Source Systems

    Get PDF
    Refactoring, as coined by William Obdyke in 1992, is the art of optimizing the syntactic design of a software system without altering its external behavior. Refactoring was also cataloged by Martin Fowler as a response to the existence of design defects that negatively impact the software\u27s design. Since then, the research in refactoring has been driven by improving systems structures. However, recent studies have been showing that developers may incorporate refactoring strategies in other development related activities that go beyond improving the design. In this context, we aim in better understanding the developer\u27s perception of refactoring by mining and automatically classifying refactoring activities in 1,706 open source Java projects. We perform a \textit{differentiated replication} of the pioneering work by Tsantalis et al. We revisit five research questions presented in this previous empirical study and compare our results to their original work. The original study investigates various types of refactorings applied to different source types (i.e., production vs. test), the degree to which experienced developers contribute to refactoring efforts, the chronological collocation of refactoring with the release and testing periods, and the developer\u27s intention behind specific types of refactorings. We reexamine the same questions but on a larger number of systems. To do this, our approach relies on mining refactoring instances executed throughout several releases of each project we studied. We also mined several properties related to these projects; namely their commits, contributors, issues, test files, etc. Our findings confirm some of the results of the previous study and we highlight some differences for discussion. We found that 1) feature addition and bug fixes are strong motivators for developers to refactor their code base, rather than the traditional design improvement motivation; 2) a variety of refactoring types are applied when refactoring both production and test code. 3) refactorings tend to be applied by experienced developers who have contributed a wide range of commits to the code. 4) there is a correlation between the type of refactoring activities taking place and whether the source code is undergoing a release or a test period

    Can Refactoring be Self-Affirmed? An Exploratory Study on How Developers Document their Refactoring Activities in Commit Messages

    Get PDF
    Refactoring is a critical task in software maintenance and is usually performed to enforce best design practices, or to cope with design defects. Previous studies heavily rely on defining a set of keywords to identify refactoring commits from a list of general commits extracted from a small set of softwaresystems. All approaches thus far consider all commits without checking whether refactorings had actually happened or not. In this paper, we aim at exploring how developers document their refactoring activities during the software life cycle. We call such activity Self-Affirmed Refactoring, which is an indication ofthe developer-related refactoring events in the commit messages. Our approach relies on text mining refactoring-related change messages and identifying refactoring patterns by only consideringrefactoring commits. We found that (1) developers use a variety of patterns to purposefully target refactoring-related activities; (2) developers tend to explicitly mention the improvement of specific quality attributes and code smells; and (3) commit messages withself-affirmed refactoring patterns tend to have more significant refactoring activit

    Toward the Automatic Classification of Self-Affirmed Refactoring

    Get PDF
    The concept of Self-Affirmed Refactoring (SAR) was introduced to explore how developers document their refactoring activities in commit messages, i.e., developers explicit documentation of refactoring operations intentionally introduced during a code change. In our previous study, we have manually identified refactoring patterns and defined three main common quality improvement categories including internal quality attributes, external quality attributes, and code smells, by only considering refactoring-related commits. However, this approach heavily depends on the manual inspection of commit messages. In this paper, we propose a two-step approach to first identify whether a commit describes developer-related refactoring events, then to classify it according to the refactoring common quality improvement categories. Specifically, we combine the N-Gram TF-IDF feature selection with binary and multiclass classifiers to build a new model to automate the classification of refactorings based on their quality improvement categories. We challenge our model using a total of 2,867 commit messages extracted from well engineered open-source Java projects. Our findings show that (1) our model is able to accurately classify SAR commits, outperforming the pattern-based and random classifier approaches, and allowing the discovery of 40 more relevent SAR patterns, and (2) our model reaches an F-measure of up to 90% even with a relatively small training datase

    Mining and Managing Big Data Refactoring for Design Improvement: Are We There Yet?

    Get PDF
    Refactoring is a set of code changes applied to improve the internal structure of a program, without altering its external behavior. With the rise of continuous integration and the awareness of the necessity of managing technical debt, refactoring has become even more popular in recent software builds. Recent studies indicate that developers often perform refactorings. If we consider all refactorings performed across all projects, this consists of the refactoring knowledge that represents a rich source of information that can be useful for both developers and practitioners to better understand how refactoring is being applied in practice. However, mining, processing, and extracting useful insights, from this plethora of refactorings, seems to be challenging. In this book chapter, we take a dive into how refactoring can be mined and preprocessed. We discuss all design concepts and structural metrics that can also be mined along with refactoring operations to understand their impact better. We further investigate the many practical challenges for such extraction. The volume, velocity, and variety of extracted data require careful planning. We outline the appropriate techniques from a large number of available technologies for such system implementation

    Automating Source Code Refactoring in the Classroom

    Full text link
    Refactoring is the practice of improving software quality without altering its external behavior. Developers intuitively refactor their code for multiple purposes, such as improving program comprehension, reducing code complexity, dealing with technical debt, and removing code smells. However, no prior studies have exposed the students to an experience of the process of antipatterns detection and refactoring correction, and provided students with toolset to practice it. To understand and increase the awareness of refactoring concepts, in this paper, we aim to reflect on our experience with teaching refactoring and how it helps students become more aware of bad programming practices and the importance of correcting them via refactoring. This paper discusses the results of an experiment in the classroom that involved carrying out various refactoring activities for the purpose of removing antipatterns using JDeodorant, an Eclipse plugin that supports antipatterns detection and refactoring. The results of the quantitative and qualitative analysis with 171 students show that students tend to appreciate the idea of learning refactoring and are satisfied with various aspects of the JDeodorant plugin's operation. Through this experiment, refactoring can turn into a vital part of the computing educational plan. We envision our findings enabling educators to support students with refactoring tools tuned towards safer and trustworthy refactoring

    Behind the Intent of Extract Method Refactoring: A Systematic Literature Review

    Full text link
    Code refactoring is widely recognized as an essential software engineering practice to improve the understandability and maintainability of the source code. The Extract Method refactoring is considered as "Swiss army knife" of refactorings, as developers often apply it to improve their code quality. In recent years, several studies attempted to recommend Extract Method refactorings allowing the collection, analysis, and revelation of actionable data-driven insights about refactoring practices within software projects. In this paper, we aim at reviewing the current body of knowledge on existing Extract Method refactoring research and explore their limitations and potential improvement opportunities for future research efforts. Hence, researchers and practitioners begin to be aware of the state-of-the-art and identify new research opportunities in this context. We review the body of knowledge related to Extract Method refactoring in the form of a systematic literature review (SLR). After compiling an initial pool of 1,367 papers, we conducted a systematic selection and our final pool included 83 primary studies. We define three sets of research questions and systematically develop and refine a classification schema based on several criteria including their methodology, applicability, and degree of automation. The results construct a catalog of 83 Extract Method approaches indicating that several techniques have been proposed in the literature. Our results show that: (i) 38.6% of Extract Method refactoring studies primarily focus on addressing code clones; (ii) Several of the Extract Method tools incorporate the developer's involvement in the decision-making process when applying the method extraction, and (iii) the existing benchmarks are heterogeneous and do not contain the same type of information, making standardizing them for the purpose of benchmarking difficult

    On Preserving the Behavior in Software Refactoring: A Systematic Mapping Study

    Get PDF
    Context: Refactoring is the art of modifying the design of a system without altering its behavior. The idea is to reorganize variables, classes and methods to facilitate their future adaptations and comprehension. As the concept of behavior preservation is fundamental for refactoring, several studies, using formal verification, language transformation and dynamic analysis, have been proposed to monitor the execution of refactoring operations and their impact on the program semantics. However, there is no existing study that examines the available behavior preservation strategies for each refactoring operation. Objective: This paper identifies behavior preservation approaches in the research literature. Method: We conduct, in this paper, a systematic mapping study, to capture all existing behavior preservation approaches that we classify based on several criteria including their methodology, applicability, and their degree of automation. Results: The results indicate that several behavior preservation approaches have been proposed in the literature. The approaches vary between using formalisms and techniques, developing automatic refactoring safety tools, and performing a manual analysis of the source code. Conclusion: Our taxonomy reveals that there exist some types of refactoring operations whose behavior preservation is under-researched. Our classification also indicates that several possible strategies can be combined to better detect any violation of the program semantics

    On the Impact of Refactoring on the Relationship between Quality Attributes and Design Metrics

    Get PDF
    Refactoring is a critical task in software maintenance and is generally performed to enforce the best design and implementation practices or to cope with design defects. Several studies attempted to detect refactoring activities through mining software repositories allowing to collect, analyze and get actionable data-driven insights about refactoring practices within software projects. Aim: We aim at identifying, among the various quality models presented in the literature, the ones that are more in-line with the developer’s vision of quality optimization, when they explicitly mention that they are refactoring to improve them. Method: We extract a large corpus of design-related refactoring activities that are applied and documented by developers during their daily changes from 3,795 curated open source Java projects. In particular, we extract a large-scale corpus of structural metrics and anti-pattern enhancement changes, from which we identify 1,245 quality improvement commits with their corresponding refactoring operations, as perceived by software engineers. Thereafter, we empirically analyze the impact of these refactoring operations on a set of common state-of-the-art design quality metrics. Results: The statistical analysis of the obtained results shows that (i) a few state-of-the-art metrics are more popular than others; and (ii) some metrics are being more emphasized than others. Conclusions: We verify that there are a variety of structural metrics that can represent the internal quality attributes with different degrees of improvement and degradation of software quality. Most of the metrics that are mapped to the main quality attributes do capture developer intentions of quality improvement reported in the commit messages, but for some quality attributes, they don’t
    corecore