3 research outputs found

    Biocompatible humidity sensor using paper cellulose fiber/GO matrix for human health and environment monitoring

    No full text
    Environmentally friendly humidity sensors with high sensing performance are considered crucial components for various wearable electronic devices. We developed a rapid-response and durable Paper Cellulose Fiber/Graphene Oxide Matrix (PCFGOM) humidity sensor using an all-carbon functional material. The fabricated sensor demonstrated a high sensitivity to humidity through an electrical impedance measurement, with an increase in response to humidity ranging from 10% to 90% at 1 kHz and 10 kHz, respectively, along with a response time of 1.2 s and a recovery time of 0.8 s. The stability of the sensor was also examined, with consistent performance over a period of 24 h. This novel sensor was employed in several applications, including non-contact proximity sensing, environmental humidity detection, and human respiration detection, to showcase its potential. Moreover, this work represents a significant milestone in developing inexpensive and eco-friendly humidity sensors, given the abundance of paper and graphene in nature and their biocompatibility.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Computer Engineerin

    RGO-Based Memristive Sensor for Rapid Hydrogen Detection at Room-Temperature

    No full text
    In recent years, there has been a growing interest in investigating the potential of emerging memristor (MR) devices for gas sensing applications, particularly at room temperature. This article reports on a planar Au/reduced graphene oxide (rGO)/Au memristive hydrogen sensor, fabricated on a cost-effective cyclic olefin copolymer (COC) substrate, and utilizing the rGO green carbon material as its active sensing element. The sensor's performance is evaluated using two different testing modes: conventional chemiresistive testing under a constant voltage bias (CVB) and voltage pulse (VP) modes. The CVB mode demonstrates high repeatability, selectivity, response time, and recovery time, indicating the sensor's reliable gas sensing capabilities. In addition, the VP mode significantly enhances the sensor's relative percentage response, indicating its potential for improved gas sensing performance. To optimize the sensor's response, the impact of hydrogen exposure on the MR resistive switching is studied, revealing that the effect is contingent on the VP amplitude. Specifically, gas-enhanced resistive switching is achieved at lower voltage levels, whereas at higher voltage levels, gas exposure slows down the rate of resistive switching. Consequently, voltage-pulse testing is conducted at two voltage magnitudes, low (2.5 V) and high (4.5 V), and the sensor's response is enhanced from 0.5% under CVB mode to 786% under VP mode.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Computer Engineerin

    Analog monolayer SWCNTs-based memristive 2D structure for energy-efficient deep learning in spiking neural networks

    No full text
    Advances in materials science and memory devices work in tandem for the evolution of Artificial Intelligence systems. Energy-efficient computation is the ultimate goal of emerging memristor technology, in which the storage and computation can be done in the same memory crossbar. In this work, an analog memristor device is fabricated utilizing the unique characteristics of single-wall carbon nanotubes (SWCNTs) to act as the switching medium of the device. Via the planar structure, the memristor device exhibits analog switching ability with high state stability. The device’s conductance and capacitance can be tuned simultaneously, increasing the device's potential and broadening its applications' horizons. The multi-state storage capability and long-term memory are the key factors that make the device a promising candidate for bio-inspired computing applications. As a demonstrator, the fabricated memristor is deployed in spiking neural networks (SNN) to exploit its analog switching feature for energy-efficient classification operation. Results reveal that the computation-in-memory implementation performs Vector Matrix Multiplication with 95% inference accuracy and few femtojoules per spike energy efficiency. The memristor device presented in this work opens new insights towards utilizing the outstanding features of SWCNTs for efficient analog computation in deep learning systems.Computer Engineerin
    corecore