4 research outputs found

    Coexistence of superconductivity and weak anti-localization at KTaO3 (111) interfaces

    Full text link
    The intersection of two-dimensional superconductivity and topologically nontrivial states hosts a wide range of quantum phenomena, including Majorana fermions. Coexistence of topologically nontrivial states and superconductivity in a single material, however, remains elusive. Here, we report on the observation of two-dimensional superconductivity and weak anti-localization at the TiOx/KTaO3(111) interfaces. A remnant, saturating resistance persists below the transition temperature as superconducting puddles fail to reach phase coherence. Signatures of weak anti-localization are observed below the superconducting transition, suggesting the coexistence of superconductivity and weak anti-localization. The superconducting interfaces show roughly one order of magnitude larger weak anti-localization correction, compared to non-superconducting interfaces, alluding to a relatively large coherence length in these interfaces

    Oxygen vacancy-induced anomalous Hall effect in a non-magnetic oxide

    Full text link
    The anomalous Hall effect, a hallmark of broken time-reversal symmetry and spin-orbit coupling, is frequently observed in magnetically polarized systems. Its realization in non-magnetic systems, however, remains elusive. Here, we report on the observation of anomalous Hall effect in nominally non-magnetic KTaO3. Anomalous Hall effect emerges in reduced KTaO3 and shows an extrinsic to intrinsic crossover. A paramagnetic behavior is observed in reduced samples using first principles calculations and quantitative magnetometry. The observed anomalous Hall effect follows the oxygen vacancy-induced magnetization response, suggesting that the localized magnetic moments of the oxygen vacancies scatter conduction electrons asymmetrically and give rise to anomalous Hall effect. The anomalous Hall conductivity becomes insensitive to scattering rate in the low temperature limit (T<5 K), implying that the Berry curvature of the electrons on the Fermi surface controls the anomalous Hall effect. Our observations describe a detailed picture of many-body interactions, triggering anomalous Hall effect in a non-magnetic system

    Enhanced Critical Field of Superconductivity at an Oxide Interface

    Full text link
    The nature of superconductivity and its interplay with strong spin-orbit coupling at the KTaO3(111) interfaces remains a subject of debate. To address this problem, we grew epitaxial LaMnO3/KTaO3(111) heterostructures. We show that superconductivity is robust against the in-plane magnetic field, with the critical field of superconductivity reaching 25 T in optimally doped heterostructures. The superconducting order parameter is highly sensitive to carrier density. We argue that spin-orbit coupling drives the formation of anomalous quasiparticles with vanishing magnetic moment, providing the condensate significant immunity against magnetic fields beyond the Pauli paramagnetic limit. These results offer design opportunities for superconductors with extreme resilience against magnetic field
    corecore