34 research outputs found

    Baseline marine investigation and impact of fish farming on the marine environment in Jebel Ali, Dubai, United Arab Emirates

    Get PDF
    © 2020 Scattered seashells were observed on the seabed with no marine corals. The baseline studies indicate that biodiversity decreased from the northeast to southwest direction. The dominant groups of phytoplankton were diatoms followed by dinoflagellates, with insignificant vertical variations in species composition and population due to shallow water. The benthic diversity over the majority of the study area was relatively low compared with other nearshore areas in the region. All subtidal habitats showed evidence of disturbance to varying degrees, with no fish species recorded at these locations. The soft sediment habitat was found to cover much of the area footprint, and faunal diversity was very low. Fish diversity and abundance were equally poor with only a few demersal species recorded. No evidence of coral colonization was recorded although the presence of a low-profile, encrusting species was recorded in close proximity, to the east of the study area. Mangrove, coral, and seagrass were absent in the study area and its immediate vicinity. Modelling of waste plume suggested that the harbor water is fairly well-mixed, and the dispersion of ammonia attenuates with distance

    Assessment of heavy metals in roadside dust along the Abu Dhabi–Al Ain National Highway, UAE

    Get PDF
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Concentrations of key heavy metals (Pb, Zn, Cd, Ni, Cr, Mn, As, and Hg) have been investigated in roadside dust collected from Abu Dhabi–Al Ain National Highway in UAE. The heavy metals contents were analyzed by atomic absorption spectrometer. Heavy metal levels varied widely from 227.9 to 2765, 19 to 1540, 37.4 to 398.6, 20.1 to 123, 0.3 to 0.7, 0.1 to 0.9, 0.1 to 0.7, and 0.1 to 0.5 mg/kg for Mn, Cr, Zn, Pb, Cd, Hg, Ni, and As, respectively. The spatial distribution pattern showed that different sources of roadway metal emissions dominate at specific locations. Peaks in heavy metal concentrations were frequently observed in locations with high traffic volume, road intersections and junctions, gas and bus stations. Decreased levels of heavy metals were measured in locations with low traffic loadings and in close proximity to farm and forest areas. In addition to traffic-related heavy metals, emissions from fossil fuel and industries remain of significance. Natural sources, through regular dust storms, are important contributors to the observed metal levels. Enrichment factor indicated that As and Ni were entirely originated from crustal sources. Cd, Zn, Pb, and Mn were moderately enriched and are probably derived from mixed sources (traffic flows, gas stations, construction and agricultural activities, among others). Road dust was significantly enriched in Cr and Hg indicating their dominant anthropogenic origin. The average geo-accumulation index values suggested that road dust are uncontaminated with Mn, Ni, and As, uncontaminated to moderately contaminated with Zn and Pb, and moderately contaminated with Cr, Cd, and Hg. The contamination factors indicated very highly contaminated road dust with Cr and Hg, considerably contaminated with Cd, and moderately contaminated with Mn, Zn, and Pb. Results of ecological risk assessment revealed that all heavy metals in road dust pose low risk to local ecosystems, except for Cd and Hg, which constitute potentially considerable risk and high risk, respectively

    Long-term trends in ambient fine particulate matter from 1980 to 2016 in United Arab Emirates

    Get PDF
    © 2019, Springer Nature Switzerland AG. This paper presents the most comprehensive datasets of ambient fine particulate matter (PM 2.5 ) for the UAE from 1980 to 2016. The long-term distributions of PM 2.5 showed the annual average PM 2.5 concentrations constantly exceeded the EPA and WHO guidelines. They varied from 77 to 49 μg/m 3 with an overall average of 61.25 μg/m 3 . While the inter-annual variability in PM 2.5 concentrations showed relatively a cyclic pattern, with successive ups and downs, it broadly exhibited an increasing trend, particularly, over the last 14 years. PM 2.5 concentrations displayed a strong seasonal pattern, with greatest values observed during warm summer season, a period of high demand of electricity and dust events. The lowest values found in autumn are attributable to reduced demand of energy. Decreased atmospheric temperatures and high relative humidity coinciding with this period are likely to reduce the secondary formation of PM 2.5 . The spatial changes in PM 2.5 concentrations exhibited gradual downward trends to the north and northeast directions. Airborne PM 2.5 is prevalent in the southern and western regions, where the majority of oil and gas fields are located. PM 2.5 /PM 10 ratio indicated that ambient aerosols are principally associated with anthropogenic sources. Peaks in PM 2.5 /CO ratio were frequently observed during June, July, and August, although few were concurrent with March. This indicates that secondary formation plays an important role in PM 2.5 levels measured in these months, especially as the photochemical activities become relatively strong in these periods. The lowest PM 2.5 /CO ratios were found during September, October, and November (autumn) suggesting a considerable contribution of primary combustion emissions, especially vehicular emissions, to PM 2.5 concentration. PM 2.5 concentrations are positively correlated with sulfate levels. In addition to sea and dust aerosols, sulfate concentration in the coastal region is also related to fossil fuel burning from power plants, oil and gas fields, and oil industries. The population-weighted average of PM 2.5 in UAE was 63.9 μg/m 3 , which is more than three times greater than the global population-weighted mean of 20 μg/m 3

    Seasonal impact to air qualities in industrial areas of the arabian gulf region

    Get PDF
    © 2018 Korean Society of Environmental Engineers. Air quality conditions and pollution status have been evaluated in the industrial area between Sharjah and Ajman border in UAE. Daily concentrations of O3, CO, NO2, SO2, PM2.5, PM10, Total Volatile Organic Compounds (TVOC) and Total Suspended Particulate (TSP) have been monitored from Sept. 2015 to April 2016. The monthly average concentrations of O3, CO, NO2, SO2, TVOC were within the UAE ambient air quality standards during the survey period. However, PM10 and TSP levels exceeded the recommended limits in Sept. 2015, Oct. 2015 and March 2016. Temporal variations in air quality parameters showed highest levels in March 2016 for PM2.5, PM10, NO2, TVOC and TSP, whereas O3, SO2 and CO showed relatively low values in this month. PM2.5 levels in ambient air were above the EPA guideline of 35 μg/m³ in all months. PM2.5 was the critical ambient air pollutant with Index for Pollutant (Ip) values varying from 103-209, indicating Air Quality Index categories of unhealthy for sensitive groups (62.5%) to unhealthy (25%) to very unhealthy (12.5%). The Ip average values of PM2.5 decreased from Sept. 2015 to reach lowest value in Dec. 2015 before increasing gradually, peaking in March 2016. These results suggest the potential health risks associated with PM2.5 is low in winter, where the prevailing meteorological conditions of lower temperatures, higher humidity, higher wind speed reduced particulate matter. The results revealed the industrial area is impacted by anthropogenic and natural sources of particulate matter

    Correlation of blood oxidative stress parameters to indoor radiofrequency radiation: A cross sectional study in Jordan

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Background: Electromagnetic pollution is a general health concern worldwide, as cell phone towers are ubiquitous and are located adjacent to or on the roof of schools, and hospitals. However, the health risks are still inconclusive. This cross-sectional study evaluated the potential effect of electromagnetic radiation generated from various resources including cell phone towers on blood glutathione S transferase activity (e-GST) and total antioxidant activity of the Jordanian population. Methods: The power density of three districts in the city of Irbid, Jordan was mapped to generate “outside the houses” and “inside the houses” maps. The effect of categorical variables (gender, using a cell phone, presence of Wi-Fi modem, previous exposure to medical imaging) and continuous variables (distance from the base station, the elevation of the house, the duration of stay in the house, power density outside houses, power density inside houses) on e-GST and total antioxidant activity were investigated. Results: The EMR generated outside the houses—including cell phone towers—did not reach inside the houses at the same power and had no significant influence on e-GST activity. The EMR inside the house, which primarily came from internal resources, has a significant effect on e-GST activity. The duration of stay inside the house, the use of cell phones, and the presence of a Wi-Fi modem had a proportional effect on e-GST activity. The total antioxidant activity was statistically equal between the tested and control groups. Conclusion: Several factors such as building materials restricted the penetration of EMR reaching inside the houses. EMR generated inside rather than outside the houses had a proportional effect on e-GST. The differences in e-GST were compensated successfully by other antioxidant mechanisms. Further research is needed to identify other possible sources of antioxidants, and to evaluate long-term effects and genetic polymorphism

    Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes

    Get PDF
    © 2019 Elsevier B.V. The treatment of olive mill wastewater (OMW) in Jordan was investigated in this work using ultrasound oxidation (sonolysis) combined with other advanced oxidation processes such as ultraviolet radiation, hydrogen peroxide (H2O2) and titanium oxide (TiO2) catalyst. The efficiency of the combined oxidation process was evaluated based on the changes in the chemical oxygen demand (COD). The results showed that 59% COD removal was achieved within 90 min in the ultrasound /UV/TiO2 system. A more significant synergistic effect was observed on the COD removal efficiency when a combination of US/UV/TiO2 (sonophotocatalytic) processes was used at low ultrasound frequency. The results were then compared with the COD values obtained when each of these processes was used individually. The effects of different operating conditions such as, ultrasound power, initial COD concentration, the concentration of TiO2, frequency of ultrasound, and temperature on the OMW oxidation efficiency were studied and evaluated. The effect of adding a radical scavenger (sodium carbonate) on the OMW oxidation efficiency was investigated. The results showed that the sonophotocatalytic oxidation of OMW was affected by the initial COD, acoustic power, temperature and TiO2 concentration. The sonophotocatalytic oxidation of OMW increased with increasing the ultrasound power, temperature and H2O2 concentration. Sonolysis at frequency of 40 kHz combined with photocatalysis was not observed to have a significant effect on the OMW oxidation compared to sonication at frequency of 20 kHz. It was also found that the OMW oxidation was suppressed by the presence of the radical scavenger. The COD removal efficiency increased slightly with the increase of TiO2 concentration up to certain point due to the formation of oxidizing species. At ultrasound frequency of 20 kHz, considerable COD reduction of OMW was reported, indicating the effectiveness of the combined US/UV/TiO2 process for the OMW treatment

    Efficient removal of phenol compounds from water environment using Ziziphus leaves adsorbent

    Get PDF
    © 2020 Elsevier B.V. Industrial processes generate toxic organic molecules that pollute environment water. Phenol and its derivative are classified among the major pollutant compounds found in water. They are naturally found in some industrial wastewater effluents. The removal of phenol compounds is therefore essential because they are responsible for severe organ damage if they exist above certain limits. In this study, ground Ziziphus leaves were utilized as adsorbents for phenolic compounds from synthetic wastewater samples. Several experiments were performed to study the effect of several conditions on the capacity of the Ziziphus leaves adsorbent, namely: the initial phenol concentration, the adsorbent concentration, temperature, pH value, and the presence of foreign salts (NaCl and KCl). The experimental results indicated that the adsorption process reached equilibrium in about 4 h. A drop in the amount of phenol removal, especially at higher initial concentration, was noticed upon increasing the temperature from 25 to 45 °C. This reflects the exothermic nature of the adsorption process. This was also confirmed by the calculated negative enthalpy of adsorption (−64.8 kJ/mol). A pH of 6 was found to be the optimum value at which the highest phenol removal occurred with around 15 mg/g at 25 °C for an initial concentration of 200 ppm. The presence of foreign salts has negatively affected the phenol adsorption process. The fitting of the experimental data, using different adsorption isotherms, indicated that the Harkins-Jura isotherm model was the best fit, evident by the high square of the correlation coefficient (R2) values greater than 0.96. The kinetic study revealed that the adsorption was represented by a pseudo-second-order reaction. The results of this study offer a basis to use Ziziphus leaves as promising adsorbents for efficient phenol removal from wastewater

    Evaluation of the gulf of aqaba coastal water, Jordan

    Get PDF
    © 2020 by the authors. (1) Background: The Gulf of Aqaba (GoA) supports unique and diverse marine ecosystems. It is one of the highest anthropogenically impacted coasts in the Middle East region, where rapid human activities are likely to degrade these naturally diverse but stressed ecosystems. (2) Methods: Various water quality parameters were measured to assess the current status and conditions of GoA seawater including pH, total dissolved solids (TDS), total alkalinity (TA), Cl-, NO3-, SO42-, PO43-, NH4+, Ca2+, Mg2+, Na+, K+, Sr, Cd, Co, Cr, Cu, Fe, Mn, Pb, and Zn. (3) Results: The pH values indicated basic coastal waters. The elevated levels of TDS with an average of about 42 g/L indicated highly saline conditions. Relatively low levels of inorganic nutrients were observed consistent with the prevalence of oligotrophic conditions in GoA seawater. The concentrations of Ca2+, Mg2+, Na+, K+, Sr, Cl-, and SO42- in surface layer varied spatially from about 423-487, 2246-2356, 9542-12,647, 513-713, 9.2-10.4, 22,173-25,992, and 317-407 mg/L, respectively. The average levels of Cd, Co, Cr, Cu, Fe, Mn, Pb and Zn ranged from 0.51, 0.38, 1.44, 1.29, 0.88, 0.38, and 6.05 μg/L, respectively. (4) Conclusions: The prevailing saline conditions of high temperatures, high evaporation rates, the water stratification and intense dust storms are major contributing factors to the observed seawater chemistry. The surface distribution of water quality variables showed spatial variations with no specific patterns, except for metal contents which exhibited southward increasing trends, closed to the industrial complex. The vast majority of these quality parameters showed relatively higher values compared to those of other regions

    Preparation of H3PO4 modified Sidr biochar for the enhanced removal of ciprofloxacin from water

    Get PDF
    In this study, biochar was prepared from Sidr plant leaves and used for the treatment of ciprofloxacin (CIP)-contaminated water. CIP is important class of emerging water pollutants from pharmaceutical industries. The biochar showed 65% adsorption efficiency and 43.48 mg/g adsorption capacity of CIP. Adsorption efficiency as well as adsorption capacity were improved to 91% and 62.50 mg/g, respectively, by phosphoric acid (H3PO4) modified biochar. Removal of CIP by the prepared biochar was due to different surface functional groups of CIP and biochar as revealed from the study of different characterization analyses. The presence of PO43- group in modified biochar led to maximum binding of CIP. Also, the modified biochar showed higher reusability potential and less leaching of ions when compared to the raw biochar. Removal of CIP was affected by concentrations of CIP, the amount of biochar and different pH\u27s; the maximum removal of CIP was achieved at pH 4. The Freundlich and pseudo-first-order models best fitted the removal of CIP by modified biochar. Advanced characterization techniques were applied to investigate surface and physiological characteristics of the biochar and modified biochar. The modification showed high impact on the performance and stability of biochar. The study showed significant impacts of modification on the potential of the biochar for treatment of CIP-contaminated water

    Changes in the Invasion Rate of Prosopis juliflora and Its Impact on Depletion of Groundwater in the Northern Part of the United Arab Emirates

    Get PDF
    Prosopis species were introduced to the United Arab Emirates (UAE) region for desert greening. However, the species now pose a great threat to the native plant diversity. This study used high-resolution satellite imagery (1990–2019) to understand the history and current distribution of Prosopis species and their impact on fresh groundwater. The results show that the Prosopis invasion in the study area reached its maximum expansion rate in 2019 and covered an area of about 16 km2 compared to 0.2 km2 in 1990. The areas near Sharjah Airport, Umm Fannan, and Al Talla, located at a lower elevation of the sand dune area, are heavily invaded. Prosopis groundwater requirement derived using evapotranspiration shows that groundwater consumption has changed drastically after 2010 and consumed about 22.22 million m3 of groundwater in 2019, which is about a 7372% increase in groundwater consumption from the year 1990 to 2019. The results can be useful for setting up a management plan for the sustainable use of this species in the UAE region in particular and other similar countries in the arid land regions that are suffering from freshwater depletion because of Prosopis invasion
    corecore