30 research outputs found

    Effect of the COVID-19 pandemic on surgery for indeterminate thyroid nodules (THYCOVID): a retrospective, international, multicentre, cross-sectional study

    Get PDF
    Background Since its outbreak in early 2020, the COVID-19 pandemic has diverted resources from non-urgent and elective procedures, leading to diagnosis and treatment delays, with an increased number of neoplasms at advanced stages worldwide. The aims of this study were to quantify the reduction in surgical activity for indeterminate thyroid nodules during the COVID-19 pandemic; and to evaluate whether delays in surgery led to an increased occurrence of aggressive tumours.Methods In this retrospective, international, cross-sectional study, centres were invited to participate in June 22, 2022; each centre joining the study was asked to provide data from medical records on all surgical thyroidectomies consecutively performed from Jan 1, 2019, to Dec 31, 2021. Patients with indeterminate thyroid nodules were divided into three groups according to when they underwent surgery: from Jan 1, 2019, to Feb 29, 2020 (global prepandemic phase), from March 1, 2020, to May 31, 2021 (pandemic escalation phase), and from June 1 to Dec 31, 2021 (pandemic decrease phase). The main outcomes were, for each phase, the number of surgeries for indeterminate thyroid nodules, and in patients with a postoperative diagnosis of thyroid cancers, the occurrence of tumours larger than 10 mm, extrathyroidal extension, lymph node metastases, vascular invasion, distant metastases, and tumours at high risk of structural disease recurrence. Univariate analysis was used to compare the probability of aggressive thyroid features between the first and third study phases. The study was registered on ClinicalTrials.gov, NCT05178186.Findings Data from 157 centres (n=49 countries) on 87 467 patients who underwent surgery for benign and malignant thyroid disease were collected, of whom 22 974 patients (18 052 [78 center dot 6%] female patients and 4922 [21 center dot 4%] male patients) received surgery for indeterminate thyroid nodules. We observed a significant reduction in surgery for indeterminate thyroid nodules during the pandemic escalation phase (median monthly surgeries per centre, 1 center dot 4 [IQR 0 center dot 6-3 center dot 4]) compared with the prepandemic phase (2 center dot 0 [0 center dot 9-3 center dot 7]; p<0 center dot 0001) and pandemic decrease phase (2 center dot 3 [1 center dot 0-5 center dot 0]; p<0 center dot 0001). Compared with the prepandemic phase, in the pandemic decrease phase we observed an increased occurrence of thyroid tumours larger than 10 mm (2554 [69 center dot 0%] of 3704 vs 1515 [71 center dot 5%] of 2119; OR 1 center dot 1 [95% CI 1 center dot 0-1 center dot 3]; p=0 center dot 042), lymph node metastases (343 [9 center dot 3%] vs 264 [12 center dot 5%]; OR 1 center dot 4 [1 center dot 2-1 center dot 7]; p=0 center dot 0001), and tumours at high risk of structural disease recurrence (203 [5 center dot 7%] of 3584 vs 155 [7 center dot 7%] of 2006; OR 1 center dot 4 [1 center dot 1-1 center dot 7]; p=0 center dot 0039).Interpretation Our study suggests that the reduction in surgical activity for indeterminate thyroid nodules during the COVID-19 pandemic period could have led to an increased occurrence of aggressive thyroid tumours. However, other compelling hypotheses, including increased selection of patients with aggressive malignancies during this period, should be considered. We suggest that surgery for indeterminate thyroid nodules should no longer be postponed even in future instances of pandemic escalation.Funding None.Copyright (c) 2023 Published by Elsevier Ltd. All rights reserved

    Bee chitosan nanoparticles loaded with apitoxin as a novel approach to eradication of common human bacterial, fungal pathogens and treating cancer

    No full text
    Antimicrobial resistance is one of the largest medical challenges because of the rising frequency of opportunistic human microbial infections across the globe. This study aimed to extract chitosan from the exoskeletons of dead bees and load it with bee venom (commercially available as Apitoxin [Api]). Then, the ionotropic gelation method would be used to form nanoparticles that could be a novel drug-delivery system that might eradicate eight common human pathogens (i.e., two fungal and six bacteria strains). It might also be used to treat the human colon cancer cell line (Caco2 ATCC ATP-37) and human liver cancer cell line (HepG2ATCC HB-8065) cancer cell lines. The x-ray diffraction (XRD), Fourier transform infrared (FTIR), and dynamic light scattering (DLS) properties, ζ-potentials, and surface appearances of the nanoparticles were evaluated by transmission electron microscopy (TEM). FTIR and XRD validated that the Api was successfully encapsulated in the chitosan nanoparticles (ChB NPs). According to the TEM, the ChB NPs and the ChB NPs loaded with Apitoxin (Api@ChB NPs) had a spherical shape and uniform size distribution, with non-aggregation, for an average size of approximately 182 and 274 ± 3.8 nm, respectively, and their Zeta potential values were 37.8 ± 1.2 mV and − 10.9 mV, respectively. The Api@ChB NPs had the greatest inhibitory effect against all tested strains compared with the ChB NPs and Api alone. The minimum inhibitory concentrations (MICs) of the Api, ChB NPs, and Api@ChB NPs were evaluated against the offer mentioned colony forming units (CFU/mL), and their lowest MIC values were 30, 25, and 12.5 μg mL−1, respectively, against Enterococcus faecalis. Identifiable morphological features of apoptosis were observed by 3 T3 Phototox software after Api@ChB NPs had been used to treat the normal Vero ATCC CCL-81, Caco2 ATCC ATP-37, and HepG2 ATCC HB-8065 cancer cell lines for 24 h. The morphological changes were clear in a concentration-dependent manner, and the ability of the cells was 250 to 500 μg mL−1. These results revealed that Api@ChB NPs may be a promising natural nanotreatment for common human pathogens

    Unlocking the Secrets of River Pollution: Analyzing Organic Pollutants in Sediments—Experimental Study

    No full text
    Untreated wastewater released into rivers can result in water pollution, the spread of waterborne diseases, harm to ecosystems, contamination of soil and groundwater, as well as air pollution and respiratory problems for nearby humans and animals due to the release of greenhouse gases. The current study aims to investigate the recent input of anthropogenic loads into the rivers using linear alkylbenzene (LAB), which is one of the molecular chemical markers with application of sophisticated model statistical analyses. In order to determine the compositions of LABs, which act as wastewater pollution molecular indicators, surface sediment samples from the Muar and Kim Kim rivers were collected. Gas chromatography-mass spectrometry (GC-MS) was utilized to identify LABs and investigate their sources and degradation. ANOVA and the Pearson correlation coefficient were employed to determine the significance of differences between sampling locations, with a threshold of p 13/C12 homolog, and internal to external (I/E) congeners. The results indicated that LAB concentrations in the studied areas of the Muar River ranged from 87.4 to 188.1 ng g−1dw. There were significant differences in LAB homology at p 13-LAB homology. Based on the LAB ratios (I/E) determined, which ranged from 1.7 to 2.2 in the studied areas, it was concluded that effluents from primary and secondary sources are being discharged into the marine ecosystem in those areas. The degradation of LABs was up to 43% in the interrogated locations. It can be inferred that there is a requirement for enhancing the WWTPs, while also acknowledging the efficacy of LAB molecular markers in identifying anthropogenic wastewater contamination

    Assessment of Sewage Molecular Markers: Linear Alkylbenzenes in Sediments of an Industrialized Region in Peninsular Malaysia

    No full text
    In this study, the use of linear alkylbenzenes (LABs) was employed to pinpoint the sources of human activity that cause detrimental impacts on the coastal environment and river ecosystems. LABs were detected using GC–MS in sediment samples assembled from Kim Kim River (KKR) and the Port Dickson coast (PDC). To assess the significance of variations in the distribution and concentrations of LABs across the sampling sites, this study utilized several statistical techniques such as post hoc tests, LSD techniques, analysis of variance (ANOVA), and the Pearson correlation coefficient using a significance level of p 13 and C12, and long-to-short-chain (L/S) ratios. The results revealed that the LAB concentrations varied between 88.3 and 112 ng/g dw in KKR and 119 to 256 ng/g dw in the PDC. Most of the surveyed areas exhibited a substantial count of C13–LABs homologs that displayed a significant difference (p < 0.05). The I/E ratios ranged from 1.7 to 2.0 in KKR and from 2.0 to 4.1 in the PDC, suggesting that the effluents originated from sources associated with the physical phase and biological phase in wastewater treatment systems (WWTSs). The results revealed that the degradation of LABs varied between 34% and 38% in KKR and between 40% and 64% in the PDC. This study underscores the importance of ongoing improvements to WWTSs and emphasizes the potential of LABs as indicators for monitoring wastewater contamination
    corecore