5 research outputs found

    Machine learning optimised hyperspectral remote sensing retrieves cotton nitrogen status

    Get PDF
    Hyperspectral imaging spectrometers mounted on unmanned aerial vehicle (UAV) can capture high spatial and spectral resolution to provide cotton crop nitrogen status for precision agriculture. The aim of this research was to explore machine learning use with hyperspectral datacubes over agricultural fields. Hyperspectral imagery was collected over a mature cotton crop, which had high spatial (~5.2 cm) and spectral (5 nm) resolution over the spectral range 475–925 nm that allowed discrimination of individual crop rows and field features as well as a continuous spectral range for calculating derivative spectra. The nominal reflectance and its derivatives clearly highlighted the different treatment blocks and were strongly related to N concentration in leaf and petiole samples, both in traditional vegetation indices (e.g., Vogelman 1, R2 = 0.8) and novel combinations of spectra (R2 = 0.85). The key hyperspectral bands identified were at the red-edge inflection point (695–715 nm). Satellite multispectral was compared against the UAV hyperspectral remote sensing’s performance by testing the ability of Sentinel MSI to predict N concentration using the bands in VIS-NIR spectral region. The Sentinel 2A Green band (B3; mid-point 559.8 nm) explained the same amount of variation in N as the hyperspectral data and more than the Sentinel Red Edge Point 1 (B5; mid-point 704.9 nm) with the lower 10 m resolution Green band reporting an R2 = 0.85, compared with the R2 = 0.78 of downscaled Sentinel Red Edge Point 1 at 5 m. The remaining Sentinel bands explained much lower variation (maximum was NIR at R2 = 0.48). Investigation of the red edge peak region in the first derivative showed strong promise with RIDAmid (R2 = 0.81) being the best index. The machine learning approach narrowed the range of bands required to investigate plant condition over this trial site, greatly improved processing time and reduced processing complexity. While Sentinel performed well in this comparison and would be useful in a broadacre crop production context, the impact of pixel boundaries relative to a region of interest and coarse spatial and temporal resolution impacts its utility in a research capacity

    Remote sensing applications for crop type mapping and crop yield prediction for digital agriculture

    No full text
    This thesis addresses important topics in agricultural modelling research. Chapter 1 describes the importance of land productivity and the pressure on the agricultural sector to provide food. In chapter 2, a summer crop type mapping model has been developed to map major cotton fields in-season in the Murray Darling Basin (MDB) in Australia. In chapter 3, a robust crop classification model has been designed to classify two major crops (cereals and canola) in the MDB in Australia. chapter 4 focused on exploring changes in prediction quality with changes in the spatial resolution of predictors and the predictions. More specifically, this study investigated whether inputs should be resampled prior to modelling, or the modelling implemented first with the aggregation of predictions happening as a final step. In chapter 5, a new vegetation index is proposed that exploits the three red-edge bands provided by the Sentinel-2 satellite to capture changes in the transition region between the photosynthetically affected region (red region) and the Near-Infrared region (NIR region) affected by cell structure and leaf layers. Chapter 6 was conducted to test the potential of integration of two mechanistic-type model products (biomass and soil moisture) in the DDMs models. Chapter 7 was dedicated to discussing each technique used in this thesis and the outcomes of each technique, and the relationships between these outcomes. This thesis addressed the topics and questioned asked at the beginning of this research and the outcomes are listed in each chapter

    Mapping of Cotton Fields Within-Season Using Phenology-Based Metrics Derived from a Time Series of Landsat Imagery

    No full text
    A phenology-based crop type mapping approach was carried out to map cotton fields throughout the cotton-growing areas of eastern Australia. The workflow was implemented in the Google Earth Engine (GEE) platform, as it is time efficient and does not require processing in multiple platforms to complete the classification steps. A time series of Normalised Difference Vegetation Index (NDVI) imagery were generated from Landsat 8 Surface Reflectance Tier 1 (L8SR) and processed using Fourier transformation. This was used to produce the harmonised-NDVI (H-NDVI) from the original NDVI, and then phase and amplitude values were generated from the H-NDVI to visualise active cotton in the targeted fields. Random Forest (RF) models were built to classify cotton at early, mid and late growth stages to assess the ability of the model to classify cotton as the season progresses, with phase, amplitude and other individual bands as predictors. Results obtained from leave-one-season-out cross validation (LOSOCV) indicated that Overall Accuracy (OA), Kappa, Producer’s Accuracies (PA) and User’s Accuracy (UA), increased significantly when adding amplitude and phase as predictor variables to the model, than prediction using H-NDVI or raw bands only. Commission and omission errors were reduced significantly as the season progressed and more in-season imagery was available. The methodology proposed in this study can map cotton crops accurately based on the reconstruction of the unique cotton reflectance trajectory through time. This study confirms the importance of phenological metrics in improving in-season cotton fields mapping across eastern Australia. This model can be used in conjunction with other datasets to forecast yield based on the mapped crop type for improved decision making related to supply chain logistics and seasonal outlooks for production

    Machine Learning Optimised Hyperspectral Remote Sensing Retrieves Cotton Nitrogen Status

    No full text
    Hyperspectral imaging spectrometers mounted on unmanned aerial vehicle (UAV) can capture high spatial and spectral resolution to provide cotton crop nitrogen status for precision agriculture. The aim of this research was to explore machine learning use with hyperspectral datacubes over agricultural fields. Hyperspectral imagery was collected over a mature cotton crop, which had high spatial (~5.2 cm) and spectral (5 nm) resolution over the spectral range 475–925 nm that allowed discrimination of individual crop rows and field features as well as a continuous spectral range for calculating derivative spectra. The nominal reflectance and its derivatives clearly highlighted the different treatment blocks and were strongly related to N concentration in leaf and petiole samples, both in traditional vegetation indices (e.g., Vogelman 1, R2 = 0.8) and novel combinations of spectra (R2 = 0.85). The key hyperspectral bands identified were at the red-edge inflection point (695–715 nm). Satellite multispectral was compared against the UAV hyperspectral remote sensing’s performance by testing the ability of Sentinel MSI to predict N concentration using the bands in VIS-NIR spectral region. The Sentinel 2A Green band (B3; mid-point 559.8 nm) explained the same amount of variation in N as the hyperspectral data and more than the Sentinel Red Edge Point 1 (B5; mid-point 704.9 nm) with the lower 10 m resolution Green band reporting an R2 = 0.85, compared with the R2 = 0.78 of downscaled Sentinel Red Edge Point 1 at 5 m. The remaining Sentinel bands explained much lower variation (maximum was NIR at R2 = 0.48). Investigation of the red edge peak region in the first derivative showed strong promise with RIDAmid (R2 = 0.81) being the best index. The machine learning approach narrowed the range of bands required to investigate plant condition over this trial site, greatly improved processing time and reduced processing complexity. While Sentinel performed well in this comparison and would be useful in a broadacre crop production context, the impact of pixel boundaries relative to a region of interest and coarse spatial and temporal resolution impacts its utility in a research capacity
    corecore