52 research outputs found

    Simultaneous Determination of Different Polyamines and their Mono-Acetylated Derivatives in Gastric Tissue by HPLC with Post-Column Derivatization

    Get PDF
    A simple and highly sensitive procedure is described enabling the simultaneous determination of biogenic polyamines (PAs) and their related monoacetyl derivatives in stomach tissue. The method is based on HPLC using octane sulfonate as an ion-pairing agent employed in acetate buffers at pH 4.5. The application is accompanied with fluorescence detection followed by post-column derivatization with o-phthaldialdehyde at room temperature (20±0.5°C). N1- and N8-acetylspermidines (ASPD) can be determined with this method in the same run without performing any special procedures or pre-purification in concentrations exceeding 8.5 pmoles. The variability in reproducibility of the day-today precision and duplicate determination, and simultaneous determination of standard mixture and biological samples were found < 2%. The mean (± s.e.mean) retention times (n=12) for putrescine (Put), N1-ASPD, N8-ASPD, spermidine (Spd) and spermine (Spm) are 8.97±0.025; 17.64±0.063; 18.99±0.133; 28.20±0.070 and 39.81±0.098 min, respectively. The method was applied to determine PAs and specifically N1- and N8-ASPD in glandular part of stomach tissue of fasting rats (STFR) without any interference with endogenous aminoacids, histamine, and other reactive moieties. PAs and both mono-ASPD have been successfully determined in the STFR and the values are as follows: Put 37.2±10.1; N1-ASPD 5.88±0.48; N8-ASPD 4.43±0.94; Spd 750.7±22.7 and Spm 618.2±37.4 nmole/g of wet tissue. Information on gastric tissue polyamines and their acetylated derivatives may be useful in understanding the mechanism of drugs or agents that play some part in gastric ulcer production or its repair mechanisms

    Metallothionein induction reduces caspase-3 activity and TNFα levels with preservation of cognitive function and intact hippocampal neurons in carmustine-treated rats

    Get PDF
    Hippocampal integrity is essential for cognitive functions. On the other hand, induction of metallothionein (MT) by ZnSO4 and its role in neuroprotection has been documented. The present study aimed to explore the effect of MT induction on carmustine (BCNU)-induced hippocampal cognitive dysfunction in rats. A total of 60 male Wistar albino rats were randomly divided into four groups (15/group): The control group injected with single doses of normal saline (i.c.v) followed 24 h later by BCNU solvent (i.v). The second group administered ZnSO4 (0.1 µmol/10 µl normal saline, i.c.v, once) then BCNU solvent (i.v) after 24 h. Third group received BCNU (20 mg/kg, i.v, once) 24 h after injection with normal saline (i.c.v). Fourth group received a single dose of ZnSO4 (0.1 µmol/10 µl normal saline, i.c.v) then BCNU (20 mg/kg, i.v, once) after 24 h. The obtained data revealed that BCNU administration resulted in deterioration of learning and short-term memory (STM), as measured by using radial arm water maze, accompanied with decreased hippocampal glutathione reductase (GR) activity and reduced glutathione (GSH) content. Also, BCNU administration increased serum tumor necrosis factor-alpha (TNFα), hippocampal MT and malondialdehyde (MDA) contents as well as caspase-3 activity in addition to histological alterations. ZnSO4 pretreatment counteracted BCNU-induced inhibition of GR and depletion of GSH and resulted in significant reduction in the levels of MDA and TNFα as well as the activity of caspase-3. The histological features were improved in hippocampus of rats treated with ZnSO4 + BCNU compared to only BCNU-treated animals. In conclusion, MT induction halts BCNU-induced hippocampal toxicity as it prevented GR inhibition and GSH depletion and counteracted the increased levels of TNFα, MDA and caspase-3 activity with subsequent preservation of cognition

    Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling

    Get PDF
    Hepatocellular carcinoma accounts for about 80–90% of all liver cancer and is the fourth most common cause of cancer mortality. Although there are many strategies for the treatment of liver cancer, chemoprevention seems to be the best strategy for lowering the incidence of this disease. Therefore, this study has been initiated to investigate whether thymoquinone (TQ), Nigella sativa derived-compound with strong antioxidant properties, supplementation could prevent initiation of hepatocarcinogenesis-induced by diethylnitrosamine (DENA), a potent initiator and hepatocarcinogen, in rats. Male Wistar albino rats were divided into four groups. Rats of Group 1 received a single intraperitoneal (I.P.) injection of normal saline. Animals in Group 2 were given TQ (4 mg/kg/day) in drinking water for 7 consecutive days. Rats of Group 3 were injected with a single dose of DENA (200 mg/kg, I.P.). Animals in Group 4 were received TQ and DENA. DENA significantly increased alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, thiobarbituric acid reactive substances (TBARS) and total nitrate/nitrite (NOx) and decreased reduced glutathione (GSH), glutathione peroxidase (GSHPx), glutathione-s-transferase (GST) and catalase (CAT) activity in liver tissues. Moreover, DENA decreased gene expression of GSHPx, GST and CAT and caused severe histopathological lesions in liver tissue. Interestingly, TQ supplementation completely reversed the biochemical and histopathological changes induced by DENA to the control values. In conclusion, data from this study suggest that: (1) decreased mRNA expression of GSHPx, CAT and GST during DENA-induced initiation of hepatic carcinogenesis, (2) TQ supplementation prevents the development of DENA-induced initiation of liver cancer by decreasing oxidative stress and preserving both the activity and mRNA expression of antioxidant enzymes

    Acacia senegal gum exudate offers protection against cyclophosphamide-induced urinary bladder cytotoxicity

    Get PDF
    Cylophosphamide (CYCL) is a strong anticancer and immunosuppressive agent but its urotoxicity presents one of the major toxic effects that limit its wide usage particularly in high dose regimens. Therefore, this study aimed to investigate Acacia Senegal gum exudate, Gum Arabic (GA), for its possible role as a natural, nontoxic agent against CYCL-induced urotoxicity. Male Swiss albino rats were exposed to CYCL (150 mg/kg BW, once i.p) with or without GA oral supplementation (7.5 g/kg/day for 6 days) through drinking water. Glutathione (GSH), Malondialdehyde (MDA) and Nitric oxide (NO) bladder contents were assessed. Responsiveness of the bladder rings to acetylcholine (ACh) in vitro, microscopic and macroscopic features are also investigated. CYCL produced pronounced harmful effects on bladder urothelial lining with significant increases in (MDA) and NO levels in the tissue homogenates. Bladder-GSH content is dropped by over 60% following CYCL injection. Bladder contractility, as measured by its responsiveness to ACh, recorded a marked reduction. The isolated bladders exhibited such macroscopic changes as severe edema, inflammation and extravasation. The bladder weight increased as well. Histological changes were evident in the form of severe congestion, petechial hemorrhage and chronic inflammatory reaction in the lamina propria accompanied with desquamated epithelia. GA, a potential protective agent, produced an almost complete reversal of NO induction, lipid peroxidation or cellular GSH bladder contents in the GA + CYCL-treated group. Likewise, bladder inflammation and edema were reduced. Bladder rings showed a remarkable recovery in their responsiveness to ACh. Bladder histological examination showed a near normal configuration and structural integrity, with a significant reduction in inflammation and disappearance of focal erosions. These remarkable effects of GA may be attributed to its ability to neutralize acrolein, the reactive metabolite of CYCL and/or the resultant reactive oxygen metabolites, through a scavenging action. GA may limit the cascading events of CYCL-induced damage, initiating a cytoprotective effect leading to structural and functional recovery of the bladder tissues

    Association between Paraoxonases Gene Expression and Oxidative Stress in Hepatotoxicity Induced by CCl 4

    Get PDF
    Objectives. The purpose of the study is to evaluate the hepatoprotective effect of rutin in carbon tetrachloride- (CCl4-) induced liver injuries in rat model. Methods. Forty male Wistar albino rats were divided into four groups. Group I was the control group and received dimethyl sulphoxide (DMSO) and olive oil. Group II received rutin. Groups III was treated with CCl4. Group IV was administered rutin after 48 h of CCl4 treatment. Liver enzymes level, lipid profile, lipid peroxidation, and hydrogen peroxide were measured. The genes expression levels were monitored by real time RT-PCR and western blot techniques. Results. CCl4 group showed significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), thiobarbituric acid reactive substances (TBAR), hydrogen peroxide (H2O2), and lipid profile and a significant decrease in glutathione peroxidase (GPx), glutathione S transferase (GST), catalase (CAT), paraoxonase-1 (PON-1), paraoxonase-3 (PON-3), peroxisome proliferator activated receptor delta (PPAR-δ), and ATP-binding cassette transporter 1 (ABAC1) genes expression levels. Interestingly, rutin supplementation completely reversed the biochemical and gene expression levels induced by CCl4 to control values. Conclusion. CCl4 administration causes aberration of genes expression levels in oxidative stress pathway resulting in DNA damage and hepatotoxicity. Rutin causes hepatoprotective effect through enhancing the antioxidant genes

    Downregulation of Oxidative and Nitrosative Apoptotic Signaling by L-Carnitine in Ifosfamide-Induced Fanconi Syndrome Rat Model

    Get PDF
    It is well documented that ifosfamide (IFO) therapy is associated with sever nephropathy in the form of Fanconi syndrome. Although oxidative stress has been reported as a major player in IFO-induced Fanconi syndrome, no mechanism for this effect has been ascertained. Therefore, this study has been initiated to investigate, on gene expression level, the mechanism of IFO-induce nephrotoxicity and those whereby carnitine supplementation attenuates this serious side effect of IFO. To achieve the ultimate goals of this study, adult male rats were assigned to one of four treatment groups, namely, control, L-carnitine, IFO, and IFO plus L-carnitine. Administration of IFO for 5 days significantly increased serum creatinine, blood urea nitrogen (BUN), and total nitrate/nitrite (NOx) production in kidney tissues. In addition, IFO significantly increased mRNA expression of inducible nitric oxide synthase (iNOS), caspase-9, and caspase-3 and significantly decreased expression of glutathione peroxides (GPx), catalase (CAT), and Bcl2 in kidney tissues. Administration of L-carnitine to IFO-treated rats resulted in a complete reversal of the all biochemical and gene expression changes, induced by IFO, to the control values. Data from this study suggest that L-carnitine prevents the development of IFO-induced nephrotoxicity via downregulation of oxidative and nitrosative apoptotic signaling in kidney tissues

    Beneficial effect of nitric oxide synthase inhibitor on hepatotoxicity induced by allyl alcohol

    No full text
    Department of Pharmacology, College of Pharmacy, King Saud UniversityThe effect of aminoguanidine (a selective inhibitor of inducible nitric oxide synthase) on allyl alcohol-induced liver injury was assessed by the measurement of serum ALT and AST activities and histopathological examination. When aminoguanidine (50– 300 mg/kg, i.p.) was administered to mice 30 min before a toxic dose of allyl alcohol (75 mL/kg, i.p.), significant changes related to liver injury were observed. In the presence of aminoguanidine the level of ALT and AST enzymes were significantly decreased. All symptoms of liver necrosis produced by allyl alcohol toxicity almost completely disappeared when animals were pretreated with aminoguanidine at 300 mg/kg. Depletion of hepatic glutathione as a consequence of allyl alcohol metabolism was minimal in mice pretreated with aminoguanidine at 300 mg/kg. It was found that the inhibition of toxicity was not due to alteration in allyl alcohol metabolism since aminoguanidine did not effect alcohol dehydrogenase activity both in vivo and in vitro

    Formation of Leukotrienes From Calcium Ionophore-A23187 Stimulated Rabbit, Rat and Mice White Blood Cells

    No full text
    Leukotrienes (LTs) producing capacity was investigated in calcium ionophore A23 187- stimulated rabbit. rat and mice peripheral white blood cells suspension. A reverse phase high performance liquid chromatography technique and computerized UV spectroscopy were employed to isolate and quantitate the released LTs namely. LTC4 and LTB4. Preincubation of rabbit white blood cells at 37°C for 5 min followed by calcium ionophore-A23 187 (1 pM) stimulation for another 5 min produced an equal amounts of LTC4 as compared to LTC4 produced by human white blood cells (105±11 versus 95±9.5 pmol/107 cells respectively; mean ±SEM). In contrast rabbit white blood cells synthesized significantly lower LTB4 in comparison with LTB4 produced by peripheral white blood cells from healthy control (168±18 versus 228±19 pmol/107 cells respectively: mean ±SEM). When rat and mice white blood cells suspension were stimulated with calcium ionophore A23187 (1 µM) after preincubation at 37°C for 5 min, equivalent amounts of LTC4 and LTB4 were observed. However, LTB4 and LTC4 produced by rat and mice white blood cells were significantly lower in comparison with LTB4 and LTCj produced by human white blood cells stimulated with calcium ionophore-A23 187. These results demonstrate that rabbit. rat and mice white blood cells suspension possess the capacity to produce LTC4 and LTB4 from endogenous substrate after calcium ionophore-A23 187 stimulation
    corecore