31 research outputs found

    Green synthesis of platinum nanoparticles using Saudi’s Dates extract and their usage on the cancer cell treatment

    No full text
    Green synthesis of the Platinum nanoparticle of dates is carried out for examining their effect on various cancer cells. The extract solution of Dates (biodegradable surfactant) is used for this purpose. The bio-degradable plant-based surfactant, used in the study, occurs naturally, and no other reducing, or capping agent is used for cancer cell treatment. The aqueous extract solution of popular dates Ajwa and Barni acts as a stabilizing and reducing agent during the production of PtNPs at ambient condition because of simplicity, long-time stability, and cost-effectiveness. In order to achieve the best size and shape of nanoparticles, different ratio of extract and metal salt were mixed and developed. Additionally, nanoparticles of varying size were furnished by altering the pH of the reaction. Spectroscopic techniques like FTIR, X-ray Diffraction (XRD), EDX, thermos-gravimetric analysis (TGA), UV–vis, and transmission electron microscopy (TEM) were applied to identify PtNPs. In this study, electrochemical HPCL and high-performance liquid chromatography (HPCL) are combined for better understanding and effectiveness. The metabolites such as amino acid, sugar, organic acid, flavonoids, phenol, and minerals, in the Dates produced in Al-Madinah Al-Munawarah, have been analyzed with the help of the techniques employed in the study.PtNPs' anticancer activities were evaluated for different cancer cells including the colon carcinoma cells (HCT-116), breast cells (MCF-7), and hepatocellular carcinoma (HePG-2). Commonly used effective anticancer agent, Doxorubicin HCl, is used in the current study related to anticancer activitiy. To discover the antibacterial effect, antibacterial agents Ampicillin and Gentamicin are used. Lastly, the Gram-negative bacteria: Escherichia coli (RCMB 010052) and Gram-Positive Bacteria: Bacillus subtilis (RCMB 010067) were used to determine the antibacterial application of PtNPs. Keywords: Platinum nanoparticles, Ajwa and Barni extract, TEM, Anticancer activit

    Estimating the Impact of Nanophases on the Production of Green Cement with High Performance Properties

    No full text
    Ordinary Portland cement (OPC) production is energy-intensive and significantly contributes to greenhouse gas emissions. One method to reduce the environmental impact of concrete production is the use of an alternative binder, calcium sulfoaluminate cement, which offers lower CO2 emissions and reduces energy consumption for cement production. This article describes the effect of adding nanophases, namely belite, calcium sulfoaluminate, calcium aluminum monosulfate (β-C2S, C4A3S, and C4AS, respectively) on OPC’s properties. These phases are made from nanosubstances such as nano-SiO2, calcium nitrate (Ca(NO3)2), and nano-aluminum hydroxide Al(OH)3 with gypsum (CaSO4·2H2O). The impact of β-C2S, C4A3S, and C4AS nanophases on the capabilities of cements was assessed by batch experimentations and IR, XRD, and DSC techniques. The results showed that the substituting of OPC by nano phases (either 10% C4A3S or 10% C4A3S and 10% β-C2S) reduced setting times, reduced the water/cement ratio and the free-lime contents, and increased the combined water contents as well as compressive strength of the cement pastes. The blends had high early and late compressive strength. The IR, XRD, and DSC analyses of the blends of 10% C4A3S or 10% C4A3S and 10% β-C2S cement displayed an increase in the hydrate products and the presence of monosulfate hydrate. The addition of 10% C4AS or 10% C4AS and 10% β-C2S to OPC reduced the setting times, decreased the W/C ratio, free lime, the bulk density, and increased the chemically-combined water and compressive strength. Overall, the results confirmed that the inclusion of the nanophases greatly enhanced the mechanical and durability properties of the OPCs

    Plant-mediated green synthesis of gold nanoparticles using an aqueous extract of Passiflora ligularis, optimization, characterizations, and their neuroprotective effect on propionic acid-induced autism in Wistar rats

    No full text
    The current study was conducted to examine an innovative method for synthesizing gold nanoparticles (AuNPs) from an aqueous sweet granadilla (Passiflora ligularis Juss) P. ligularis. Furthermore, the synthesized AuNPs were used to explore their potential neuroprotective impact against propionic acid (PPA)-induced autism. A sweet granadilla extract was used to achieve the synthesis of AuNPs. The structural and dimensional dispersion of AuNPs were confirmed by different techniques, including UV–Vis spectrophotometer (UV–Vis), X-ray Diffraction (XRD) Pattern, Energy Dispersive X-ray (EDX), Zeta potential, and High-Resolution Transmission Electron Microscopy (HRTEM) analysis. The AuNPs mediated by P. ligularis adopt a spherical shape morphology and the particle size was distributed in the range of 8.43–13 nm without aggregation. Moreover, in vivo, the anti-autistic effects of AuNPs administration were higher than those of P. ligularis extract per second. In addition, the reduced anxiety and neurobehavioral deficits of AuNPs were observed in autistic rats which halted the brain oxidative stress, reduced inflammatory cytokines, ameliorated neurotransmitters, and neurochemical release, and suppressed apoptotic genes (p < 0.05). The alleviated antiapoptotic gene expression and histopathological analysis confirmed that the treatment of AuNPs showed significant neural pathways that aid in reducing tissue damage and necrosis. The results emphasize that the biomedical activity was increased by using the green source synthesis P. ligularis -AuNPs. Additionally, the formulation of AuNPs demonstrates strong neuroprotective effects against PPA-induced autism that were arbitrated by a range of different mechanisms, such as anti-inflammatory, antioxidant, neuromodulator, and antiapoptotic effects

    Selenium nanoparticles synthesized using an eco-friendly method: Dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness

    No full text
    International audienceSelenium nanoparticles (SeNPs) were fabricated using a green microwave technique in the presence of ascorbic acid. The morphological features indicated that the semi-spherical SeNPs with a diameter 8.5-22nm were configured in agglomerated spherical shapes with diameters around 0.47-0.71 μm. Furthermore, the removal of Fuchsin Basic dye from aqueous solutions was investigated upon variation of concentration of SeNPs. The degradation efficiency achieved 100 % for 10 mg of SeNPs after 34 min of visible light irradiation time. The antioxidant activity 2 was tested via DPPH radical scavenging assay and displayed that the highest scavenging capacity (311.115.72 mg/g) was achieved by SeNPs at a concentration of 106.25 mg/mL. Otherwise, the cell viability of SeNPs through human fibroblasts cell lines in-vitro was reduced to be 75.13.8 % with nanoparticle concentration around 500 μg/mL. The antibacterial activity was investigated against gram-negative and gram-positive bacteria such as Escherichia coli (E.coli), Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumonia), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) bacteria after one day of exposure. It was illustrated that SeNPs did not display an activity towards Staphylococcus aureus, while it possessed the highest one against Escherichia coli with MBC of 50 ± 1.76 g/mL compared with 26 ± 0.6 g/mL for the standard antibiotic. These tremendous properties of SeNPs indicate that manipulating multifunctional nanoparticles for versatile wound and skin treatment applications is highly encouraging

    Synthesis and Characterization of Silica-Coated Oxyhydroxide Aluminum/Doped Polymer Nanocomposites: A Comparative Study and Its Application as a Sorbent

    No full text
    The present investigation is a comparison study of two nanocomposites: Nano-silica-coated oxyhydroxide aluminum (SiO2&ndash;AlOOH; SCB) and nano-silica-coated oxyhydroxide aluminum doped with polyaniline (SiO2&ndash;AlOOH&ndash;PANI; SBDP). The prepared nanocomposites were evaluated by monitoring the elimination of heavy metal Ni(II) ions from aquatic solutions. The synthesized nanocomposites were analyzed and described by applying scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) techniques, as well as Zeta potential distribution. In this study, two adsorbents were applied to investigate their adsorptive capacity to eliminate Ni(II) ions from aqueous solution. The obtained results revealed that SBDP nanocomposite has a higher negative zeta potential value (&minus;47.2 mV) compared with SCB nanocomposite (&minus;39.4 mV). The optimum adsorption was performed at pH 8, with approximately 94% adsorption for SCB and 97% adsorption for SBDP nanocomposites. The kinetics adsorption of Ni ions onto SCB and SBDP nanocomposites was studied by applying the pseudo first-order, pseudo second-order, and Mories&ndash;Weber models. The data revealed that the adsorption of Ni ions onto SCB and SBDP nanocomposites followed the pseudo second-order kinetic model. The equilibrium adsorption data were analyzed using three models: Langmuir, Freundlich, and Dubinin&ndash;Radusekevisch&ndash;Kanager Isotherm. It was concluded that the Langmuir isotherm fits the experimental results well for the SCB and SBDP nanocomposites. Thermodynamic data revealed that the adsorption process using SCB nanocomposites is an endothermic and spontaneous reaction. Meanwhile, the Ni ion sorption on SBDP nanocomposites is exothermic and spontaneous reaction

    Synthesis, Spectroscopic Characterization, Molecular Docking, and Evaluation of Antibacterial Potential of Transition Metal Complexes Obtained Using Triazole Chelating Ligand

    No full text
    Mononuclear chelates of Ni(II), Co(II), Fe(III), Cd(II), and Cu(II) derived from triazole novel tridentate ligands were prepared and characterized by different spectroscopic methods. The metal to ligand ratio was 1 : 2, which was revealed by elemental analysis. All the complexes were electrolytic in nature as suggested by the conductivity measurements. IR pointed out that the coordination of the triazole ligand toward the metal ions was carried out through N amino and S thiophenolic atoms. The complexes were found to have octahedral geometry, and their thermal stability was also studied. The XRD spectrum of Co(II) and Fe(III) complexes concluded their crystalline structure. The parent ligand and its chelates were investigated for antimicrobial potential. Bioassay of all triazole complexes showed increased activity as compared to that of the ligand. The complexes having Ni(II), Co(II), and Cu(II) ions as metal center exhibited superior antibacterial activity in opposition to Gram-positive (B. subtilis and S. pyogenes) and Gram-negative (E. coli and P. vulgaris) bacterium as compared to standard

    Theoretical Investigation by DFT and Molecular Docking of Synthesized Oxidovanadium(IV)-Based Imidazole Drug Complexes as Promising Anticancer Agents

    No full text
    Vanadium compounds have been set in various fields as anticancer, anti-diabetic, anti-parasitic, anti-viral, and anti-bacterial agents. This study reports the synthesis and structural characterization of oxidovanadium(IV)-based imidazole drug complexes by the elemental analyzer, molar conductance, magnetic moment, spectroscopic techniques, as well as thermal analysis. The obtained geometries were studied theoretically using density functional theory (DFT) under the B3LYP level. The DNA-binding nature of the ligands and their synthesized complexes has been studied by the electronic absorption titrations method. The biological studies were carried with in-vivo assays and the molecular docking method. The EPR spectra asserted the geometry around the vanadium center to be a square pyramid for metal complexes. The geometries have been confirmed using DFT under the B3LYP level. Moreover, the quantum parameters proposed promising bioactivity of the oxidovanadium(IV) complexes. The results of the DNA-binding revealed that the investigated complexes bind to DNA via non-covalent mode, and the intrinsic binding constant (Kb) value for the [VO(SO4)(MNZ)2] H2O complex was promising, which was 2.0 &times; 106 M&minus;1. Additionally, the cytotoxic activity of the synthesized complexes exhibited good inhibition toward both hepatocellular carcinoma (HepG-2) and human breast cancer (HCF-7) cell lines. The results of molecular docking displayed good correlations with experimental cytotoxicity findings. Therefore, these findings suggest that our synthesized complexes can be introduced as effective anticancer agents

    Synthesis, structural characterization, DNA/HSA binding, molecular docking and anticancer studies of some D-Luciferin complexes

    No full text
    Several species, such as bacteria, fungi, fish, and insects, produce light through biochemical processes. Firefly D-luciferin has been studied extensively since it possesses both a high quantum yield and a wide emission wavelength. Five transition metal complexes of D-luciferin (LN) with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) were synthesized using a 1:2 metal to ligand ratio. The structure of the synthesized complexes was confirmed utilizing spectroscopic techniques (FTIR, 1H NMR, EPR, and UV–Vis), elemental analysis, thermogravimetric analysis, molar conductivity, and magnetic susceptibility. Density functional theory (DFT/B3LYP) calculations were also used to confirm the structural characteristics and provide the fully optimized geometries of the ligand and its complexes. The results revealed that luciferin is bidentately coupled to the relevant metals in each of these complexes through two sulfur atoms of thiazole rings. Molar conductance values showed the non-electrolytic character of the synthesized complexes. Diverse techniques were employed to examine the complexes' binding affinity to calf thymus DNA, including UV–Vis, fluorescence, viscosity measurements and molecular docking. The results revealed that they bind non-covalently with DNA via groove binding. Furthermore, the interaction of these complexes with human serum albumin (HSA) was investigated via UV–Vis, fluorescence and molecular docking. The binding susceptibly of the complexes toward breast cancer (PDB: 3eqm) and liver cancer (PDB: 4mf9) proteins was assessed using molecular docking studies. Finally, human hepatocellular carcinoma cell line (HepG-2) and human breast cancer cell line (MCF-7) were used to investigate the cytotoxic activity of ligand and metal complexes. Among the five synthesized complexes, [Zn(LN)2Cl2]H2O complex has the best anticancer activity against MCF-7 and HepG-2 cell lines with IC50 values of 20 and 37.39 µM, respectively. The molecular docking studies and in vitro cytotoxicity assay showed a significant correlation
    corecore