13 research outputs found

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview

    No full text
    Structural discontinuity in the spinal cord after injury results in a disruption in the impulse conduction resulting in loss of various bodily functions depending upon the level of injury. This article presents a summary of the scientific research employing electrical stimulation as a means for anatomical or functional recovery for patients suffering from spinal cord injury. Electrical stimulation in the form of functional electrical stimulation (FES) can help facilitate and improve upper/lower limb mobility along with other body functions lost due to injury e.g. respiratory, sexual, bladder or bowel functions by applying a controlled electrical stimulus to generate contractions and functional movement in the paralysed muscles. The available rehabilitative techniques based on FES technology and various Food and Drug Administration, USA approved neuroprosthetic devices that are in use are discussed. The second part of the article summarises the experimental work done in the past 2 decades to study the effects of weakly applied direct current fields in promoting regeneration of neurites towards the cathode and the new emerging technique of oscillating field stimulation which has shown to promote bidirectional regeneration in the injured nerve fibres. The present article is not intended to be an exhaustive review but rather a summary aiming to highlight these two applications of electrical stimulation and the degree of anatomical/functional recovery associated with these in the field of spinal cord injury research

    Contrasting resting-state fMRI abnormalities from sickle and non-sickle anemia

    No full text
    Sickle cell disease (SCD) is a chronic blood disorder that is often associated with acute and chronic cerebrovascular complications, including strokes and impaired cognition. Using functional resting state magnetic resonance images, we performed whole-brain analysis of the amplitude of low frequency fluctuations (ALFF), to detect areas of spontaneous blood oxygenation level dependent signal across brain regions. We compared the ALFF of 20 SCD patients to that observed in 19 healthy, age and ethnicity-matched, control subjects. Significant differences were found in several brain regions, including the insula, precuneus, anterior cingulate cortex and medial superior frontal gyrus. To identify the ALFF differences resulting from anemia alone, we also compared the ALFF of SCD patients to that observed in 12 patients having comparable hemoglobin levels but lacking sickle hemoglobin. Increased ALFF in the orbitofrontal cortex and the anterior and posterior cingulate cortex and decreased ALFF in the frontal pole, cerebellum and medial superior frontal gyrus persisted after accounting for the effect of anemia. The presence of white matter hyperintensities was associated with depressed frontal and medial superior frontal gyri activity in the SCD subjects. Decreased ALFF in the frontal lobe was correlated with decreased verbal fluency and cognitive flexibility. These findings may lead to a better understanding of the pathophysiology of SCD
    corecore