34 research outputs found

    Synthesis and Characterizations of Titanium Tungstosilicate and Tungstophosphate Mesoporous Materials

    Get PDF
    The work reports a development approach for the synthesis of novel multi-components mesoporous materials of titanium tungstate (meso-TiW) titanium tungstosilicate (meso-TiWSi) and tungstophosphate (meso-TiWP) mixed oxides that have high surface area and ordered mesoporous structures at nanometer length scale. Using the solvent evaporation-induced self-assembly (EISA) new oxides of bi- and tri-component of meso-TiW, meso-TiWSi and meso-TiWP oxides with different compositions and porosity were achieved. The physicochemical properties of the mesoporous oxides were characterized by X-ray diffraction, BET surface area analyzer, scanning, and transmission electron microscopes. Subject to the oxide composition, the obtained meso-TiW, meso-TiWSi and meso-TiWP exhibits high surface area, ordered 2D hexagonal mesostructured with order channels extended over a large area. The produced meso-TiW, meso-TiWSi, and meso-TiWP adsorbents exhibit good adsorption efficiency for the removal of Pb(II), Cd(II) and Hg(II) ions from water solution due to the presence of high surface area and accessibility of surface active sites. The adsorption efficiency of these mesoporous oxide reaches up to 95% and is found to be dependent contact time and adsorbents dose. The synthesis strategy is particularly advantageous for the production of new complex (multi-component) inorganic mesoporous materials that might have an application in the field of environmental, catalysis or energy storage and production

    Evaluation of efficient vehicular ad hoc networks based on a maximum distance routing algorithm

    Get PDF
    Traffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-hop basis based on the maximum distance toward the destination from the sender and sufficient communication lifetime, which guarantee the completion of the data transmission process. Moreover, communication overhead is minimized by finding the next hop and forwarding the packet directly to it without the need to discover the whole route first. A comparison is performed between MDORA and ad hoc on-demand distance vector (AODV) protocol in terms of throughput, packet delivery ratio, delay, and communication overhead. The outcome of the proposed algorithm is better than that of AODV

    Photoelectrochemical performance of strontium titanium oxynitride photo-activated with cobalt phosphate nanoparticles for oxidation of alkaline water

    Get PDF
    Photoelectrochemical (PEC) solar water splitting is favourable for transforming solar energy into sustainable hydrogen fuel using semiconductor electrodes. Perovskite-type oxynitrides are attractive photocatalysts for this application due to their visible light absorption features and stability. Herein, strontium titanium oxynitride (STON) containing anion vacancies of SrTi(O,N)3−δ was prepared via solid phase synthesis and assembled as a photoelectrode by electrophoretic deposition, and their morphological and optical properties and PEC performance for alkaline water oxidation are investigated. Further, cobalt-phosphate (CoPi)-based co-catalyst was photo-deposited over the surface of the STON electrode to boost the PEC efficiency. A photocurrent density of ~138 μA/cm at 1.25 V versus RHE was achieved for CoPi/STON electrodes in presence of a sulfite hole scavenger which is approximately a four-fold enhancement compared to the pristine electrode. The observed PEC enrichment is mainly due to the improved kinetics of oxygen evolution because of the CoPi co-catalyst and the reduced surface recombination of the photogenerated carriers. Moreover, the CoPi modification over perovskite-type oxynitrides provides a new dimension for developing efficient and highly stable photoanodes in solar-assisted water-splitting reactions

    Structure and electrochemical activity of nickel aluminium fluoride nanosheets during urea electro-oxidation in an alkaline solution

    Get PDF
    An electrocatalyst of potassium nickel aluminium hexafluoride (KNiAlF6) nanosheets has been prepared using solid-phase synthesis at 900 °C. X-ray diffraction, scanning electron microscopy, and conductivity studies confirmed the formation of KNiAlF6 nanosheets having a cubic defect pyrochlore structure with an average thickness of 60–70 nm and conductivity of 1.297 × 103 S m−1. The electrochemical catalytic activity of the KNiAlF6 nanosheets was investigated for urea oxidation in alkaline solution. The results show that the KNiAlF6 nanosheets exhibit a mass activity of ∼395 mA cm−2 mg−1 at 1.65 V vs. HRE, a reaction activation energy of 4.02 kJ mol−1, Tafel slope of 22 mV dec−1 and an oxidation onset potential of ∼1.35 V vs. HRE which is a significant enhancement for urea oxidation when compared with both bulk Ni(OH)2 and nickel hydroxide-based catalysts published in the literature. Chronoamperometry and impedance analysis of the KNiAlF6 nanosheets reveal lower charge transfer resistance and long-term stability during the prolonged urea electro-oxidation process, particularly at 60 °C. After an extended urea electrolysis process, the structure and morphology of the KNiAlF6 nanosheets were significantly changed due to partial transformation to Ni(OH)2 but the electrochemical activity was sustained. The enhanced electrochemical surface area and the replacement of nickel in the lattice by aluminium make KNiAlF6 nanosheets highly active electrocatalysts for urea oxidation in alkaline solution

    Evaluation of efficient vehicular ad hoc networks based on a maximum distance routing algorithm

    Get PDF
    Traffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-hop basis based on the maximum distance toward the destination from the sender and sufficient communication lifetime, which guarantee the completion of the data transmission process. Moreover, communication overhead is minimized by finding the next hop and forwarding the packet directly to it without the need to discover the whole route first. A comparison is performed between MDORA and ad hoc on-demand distance vector (AODV) protocol in terms of throughput, packet delivery ratio, delay, and communication overhead. The outcome of the proposed algorithm is better than that of AODV

    Galvanic Sensor for Detecting Corrosion during Acid Cleaning of Magnetite in Steam Boilers

    No full text
    A simple galvanic sensor was developed to determine the onset of iron corrosion under conditions similar to those used for removing the iron oxide (magnetite) layer from steam boilers with a hy-drochloric acid solution. Since the potentials of magnetite and iron are different, the initiation of the dissolution of the magnetite layer without corroding the base metal can be determined by moni-toring the potential of a sensor made of magnetite layers of different thicknesses that can be placed directly on the iron surface. Moreover, the time at which the addition of corrosion inhibitors is required to protect the base metal can be specified using this sensor. It has been shown that the time required for the iron base metal to start was dependent on the magnetite layer thickness in the sensor. With this sensor, the onset of the steel corrosion during the cleaning can be detected in re-al-time which makes the oxide removal process less harmful to the base metal

    Survey on VANET technologies and simulation models

    No full text
    Vehicular ad hoc network (VANET) is a distinctive form of Mobile Ad hoc Network (MANET) that has attracted increasing research attention recently. The purpose of this study is to comprehensively investigate the elements constituting a VANET system and to address several challenges that have to be overcome to enable a reliable wireless communications within a vehicular environment. Furthermore, the study undertakes a survey of the taxonomy of existing VANET routing protocols, with particular emphasis on the strengths and limitations of these protocols in order to help solve VANET routing issues. Moreover, as mobile users demand constant network access regardless of their location, this study seeks to evaluate various mobility models for vehicular networks. A comparison of IEEE 802.11p and Long-Term Evolution (LTE) technologies for several applications in the vehicular networking field is also carried out in the study. One key component in the VANET structure that this study intends to draw special attention is the warning structure consisting of Intelligent Traffic Lights (ITLs), which is designed to inform drivers regarding the existing traffic situation, thus enabling them to make appropriate decisions. Last but not least, the VANET simulation tools for data collection are also evaluated

    Evaluation of Matricaria aurea Extracts as Effective Anti-Corrosive Agent for Mild Steel in 1.0 M HCl and Isolation of Their Active Ingredients

    No full text
    Plant extracts have shown promising corrosion inhibitive actions for different metals in diverse corrosive climate. In numerous studies, it has been demonstrated that corrosion inhibitive features of plant extracts are due to the presence of complex mixtures of phytomolecules in their composition. However, rare efforts have been made to identify those phytomolecules accountable for the activity of the extracts. Therefore, in this paper, several Matricaria aurea extracts were prepared and assessed for their anticorrosive actions for mild steel (MS) in corrosive media (1.0 M HCl). Among the tested extracts, the methanolic extract showing the utmost anticorrosive activity was selected and processed further to identify its active phytomolecules, which led to the identification of a novel green corrosion inhibitor, MAB (Apigetrin). Furthermore, the anticorrosive properties of MAB on MS were evaluated comprehensively involving gravimetric, linear polarization, Tafel plots, EIS, and techniques like SEM and EDS. These findings expose that MAB performs like a mixed-type inhibitor and conforms the isotherm of Langmuir adsorption model. Moreover, the MS surface via SEM techniques exhibits a remarkable advanced surface of the MS plate in the company of MAB. The outcome of results through electrochemical analysis and weight loss methods were in good consonance, which depicts remarkable inhibition properties of the novel green inhibitor MAB

    Microwave-Assisted Synthesis of Co3(PO4)2 Nanospheres for Electrocatalytic Oxidation of Methanol in Alkaline Media

    No full text
    Low-cost and high-performance advanced electrocatalysts for direct methanol fuel cells are of key significance for the improvement of environmentally-pleasant energy technologies. Herein, we report the facile synthesis of cobalt phosphate (Co3(PO4)2) nanospheres by a microwave-assisted process and utilized as an electrocatalyst for methanol oxidation. The phase formation, morphological surface structure, elemental composition, and textural properties of the synthesized (Co3(PO4)2) nanospheres have been examined by powder X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), field emission-scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption isotherm investigations. The performance of an electrocatalytic oxidation of methanol over a Co3(PO4)2 nanosphere-modified electrode was evaluated in an alkaline solution using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Detailed studies were made for the methanol oxidation by varying the experimental parameters, such as catalyst loading, methanol concentration, and long-term stability for the electro-oxidation of methanol. The good electrocatalytic performances of Co3(PO4)2 should be related to its good surface morphological structure and high number of active surface sites. The present investigation illustrates the promising application of Co3(PO4)2 nanospheres as a low-cost and more abundant electrocatalyst for direct methanol fuel cells

    A novel plasminogen mutation in a child with hereditary periodic syndrome: A case report

    No full text
    Abstract Introduction Plasminogen (PLG) deficiency is an ultrarare disease. The reported manifestations in literature were linked to pseudomembrane formation and mucosal surfaces inflammation. Recently, PLG, its activators and its receptors have gained more attention in inflammation regulatory processes, including the release of proinflammatory signaling molecules, and thus its role is believed to have clinical implications beyond what has been known. Case Report We present a child with recurrent fever who, although managed initially as familial Mediterranean fever, later on, developed a constellation of findings that were not explained by a classified autoinflammatory disease. Genetic testing revealed a novel homozygous PLG mutation (PLG: c.466G>A: p.D156N) and a likely benign heterozygous MEFV gene variant. We propose that the PLG mutation is responsible for the clinical manifestations, which may or may not be exacerbated by the coexistence of the MEFV variant. A relationship between the PLG pathway, inflammation, and FMF severity has been addressed recently in several studies. Conclusion This report highlights the recently recognized role of the PLG pathway in inflammatory diseases and describes a potentially new presentation of PLG pathogenesis. Further studies are needed to confirm this finding and allow for a more definitive conclusion
    corecore