5 research outputs found

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Al-Masawa, Maimonah E.

    No full text

    Mesenchymal stem cell-derived exosomes and micrornas in cartilage regeneration:Biogenesis, efficacy, mirna enrichment and delivery

    No full text
    Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy

    Extracellular vesicles in facial aesthetics:A review

    No full text
    Facial aesthetics involve the application of non-invasive or minimally invasive techniques to improve facial appearance. Currently, extracellular vesicles (EVs) are attracting much interest as nanocarriers in facial aesthetics due to their lipid bilayer membrane, nanosized dimensions, biological origin, intercellular communication ability, and capability to modulate the molecular activities of recipient cells that play important roles in skin rejuvenation. Therefore, EVs have been suggested to have therapeutic potential in improving skin conditions, and these highlighted the potential to develop EV-based cosmetic products. This review summarizes EVs’ latest research, reporting applications in facial aesthetics, including scar removal, facial rejuvenation, anti-aging, and anti-pigmentation. This review also discussed the advanced delivery strategy of EVs, the therapeutic potential of plant EVs, and clinical studies using EVs to improve skin conditions. In summary, EV therapy reduces scarring, rejuvenates aging skin, and reduces pigmentation. These observations warrant the development of EV-based cosmetic products. However, more efforts are needed to establish a large-scale EV production platform that can consistently produce functional EVs and understand EVs’ underlying mechanism of action to improve their efficacy

    Multi-perspectives systematic review on the applications of sentiment analysis for vaccine hesitancy

    No full text
    A substantial impediment to widespread Coronavirus disease (COVID-19) vaccination is vaccine hesitancy. Many researchers across scientific disciplines have presented countless studies in favor of COVID-19 vaccination, but misinformation on social media could hinder vaccination efforts and increase vaccine hesitancy. Nevertheless, studying people's perceptions on social media to understand their sentiment presents a powerful medium for researchers to identify the causes of vaccine hesitancy and therefore develop appropriate public health messages and interventions. To the best of the authors' knowledge, previous studies have presented vaccine hesitancy in specific cases or within one scientific discipline (i.e., social, medical, and technological). No previous study has presented findings via sentiment analysis for multiple scientific disciplines as follows: (1) social, (2) medical, public health, and (3) technology sciences. Therefore, this research aimed to review and analyze articles related to different vaccine hesitancy cases in the last 11 years and understand the application of sentiment analysis on the most important literature findings. Articles were systematically searched in Web of Science, Scopus, PubMed, IEEEXplore, ScienceDirect, and Ovid from January 1, 2010, to July 2021. A total of 30 articles were selected on the basis of inclusion and exclusion criteria. These articles were formed into a taxonomy of literature, along with challenges, motivations, and recommendations for social, medical, and public health and technology sciences. Significant patterns were identified, and opportunities were promoted towards the understanding of this phenomenon
    corecore