4 research outputs found

    Polycyclic aromatic hydrocarbons in citrus fruit irrigated with fresh water under arid conditions: Concentrations, sources, and risk assessment

    Get PDF
    In Jordan, as well as in all the world countries, consumption of citrus fruits is an essential part of the daily diet, so it is important to assess the potential risk of the persistent organic pollutants such as polyaromatic hydrocarbons (PAHs) in these fruits to the human health and identify their sources in order to eliminate or reduce them. This study reports 16 priority PAHs content in four types of peeled citrus fruits grown in Jordan valley. PAHs were detected in all the studied samples in variable quantities depending on the type of citrus fruits. The results showed that the highest PAH level corresponded to acenaphthene (35.018 µg/kg) in grapefruit. Among the carcinogenic PAHs, benzo[a]anthracene (BaA) and benzo(a)pyrene (BaP) were the most representative and found in all the analyzed fruit, soil, and water samples, whereas anthracene (ANT) was not detected at all. The mean ∑16 PAHs for the different fruits were found to be 62.593 µg kg−1 in grapefruit, 24.840 µg kg−1 in lemon, 22.901 µg kg−1 in mandarin, and 5.082 µg kg−1 in orange. The dominance of naphthalene (NAP) and acenaphthene (ACE) in soil under hot climatic conditions indicates the recent and continuous input of these types in the investigated area. The bioconcentration factor (BCF) for ∑16 PAHs was observed in the order of grapefruit > lemon > mandarin > orange. Based on the results of the principal component analysis (PCA), the primary sources of PAHs in agricultural soils mainly originated from biomass burning and vehicular emissions. The incremental lifetime cancer risk (ILCR) indicated that consumption of these four citrus fruits may expose human health to potential cancer risk. The findings of this study call the policymakers and public administrations to the formulation of stringent policies and actions to control biomass burning and vehicular emissions

    Green Synthesis of Silver Nanoparticles Using Hypericum perforatum L. Aqueous Extract with the Evaluation of Its Antibacterial Activity against Clinical and Food Pathogens

    Get PDF
    The rapid development of nanotechnology and its applications in medicine has provided the perfect solution against a wide range of different microbes, especially antibiotic-resistant ones. In this study, a one-step approach was used in preparing silver nanoparticles (AgNPs) by mixing silver nitrate with hot Hypericum perforatum (St. John’s wort) aqueous extract under high stirring to prevent agglomeration. The formation of silver nanoparticles was monitored by continuous measurement of the surface plasma resonance spectra (UV-VIS). The effect of St. John’s wort aqueous extract on the formation of silver nanoparticles was evaluated and fully characterized by using different physicochemical techniques. The obtained silver nanoparticles were spherical, monodisperse, face-centered cubic (fcc) crystal structures, and the size ranges between 20 to 40 nm. They were covered with a capping layer of organic compounds considered as a nano dimension protective layer that prevents agglomeration and sedimentation. AgNPs revealed antibacterial activity against both tested Gram-positive and Gram-negative bacterial strains causing the formation of 13–32 mm inhibition zones with MIC 6.25–12.5 µg/mL; Escherichia coli strains were resistant to tested AgNPs. The specific growth rate of S. aureus was significantly reduced due to tested AgNPs at concentrations ≥½ MIC. AgNPs did not affect wound migration in fibroblast cell lines compared to control. Our results highlighted the potential use of AgNPs capped with plant extracts in the pharmaceutical and food industries to control bacterial pathogens’ growth; however, further studies are required to confirm their wound healing capability and their health impact must be critically evaluate

    Accumulation, Source Identification, and Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Jordanian Vegetables

    Get PDF
    The accumulation of polyaromatic hydrocarbons in plants is considered one of the most serious threats faced by mankind because of their persistence in the environment and their carcinogenic and teratogenic effect on human health. The concentrations of sixteen priority polycyclic aromatic hydrocarbons (16 PAHs) were determined in four types of edible vegetables (tomatoes, zucchini, eggplants, and cucumbers), irrigation water, and agriculture soil, where samples were collected from the Jordan Valley, Jordan. The mean total concentration of 16 PAHs (∑16PAHs) ranged from 10.649 to 21.774 µg kg−1 in vegetables, 28.72 µg kg−1 in soil, and 0.218 µg L−1 in the water samples. The tomato samples posed the highest ∑16PAH concentration level in the vegetables, whereas the zucchini samples had the lowest. Generally, the PAHs with a high molecular weight and four or more benzene rings prevailed among the studied samples. The diagnostic ratios and the principal component analysis (PCA) revealed that the PAH contamination sources in soil and vegetables mainly originated from a pyrogenic origin, traffic emission sources, and biomass combustion. The bioconcentration factors (BCF) for ∑16PAHs have been observed in the order of tomatoes > cucumbers and eggplants > zucchini. A potential cancer risk related to lifetime consumption was revealed based on calculating the incremental lifetime cancer risk of PAHs (ILCR). Therefore, sustainable agricultural practices and avoiding biomass combusting would greatly help in minimizing the potential health risk from dietary exposure to PAHs

    Synergistic Effects of AgNPs and Biochar: A Potential Combination for Combating Lung Cancer and Pathogenic Bacteria

    No full text
    The synthesis of reliable biological nanomaterials is a crucial area of study in nanotechnology. In this study, Emericella dentata was employed for the biosynthesis of AgNPs, which were then combined with synthesized biochar, a porous structure created through biomass pyrolysis. The synergistic effects of AgNPs and biochar were evaluated through the assessment of pro-inflammatory cytokines, anti-apoptotic gene expression, and antibacterial activity. Solid biosynthesized AgNPs were evaluated by XRD and SEM, with SEM images revealing that most of the AgNPs ranged from 10 to 80 nm, with over 70% being less than 40 nm. FTIR analysis indicated the presence of stabilizing and reducing functional groups in the AgNPs. The nanoemulsion’s zeta potential, hydrodynamic diameter, and particle distribution index were found to be −19.6 mV, 37.62 nm, and 0.231, respectively. Biochar, on the other hand, did not have any antibacterial effects on the tested bacterial species. However, when combined with AgNPs, its antibacterial efficacy against all bacterial species was significantly enhanced. Furthermore, the combined material significantly reduced the expression of anti-apoptotic genes and pro-inflammatory cytokines compared to individual treatments. This study suggests that low-dose AgNPs coupled with biochar could be a more effective method to combat lung cancer epithelial cells and pathogenic bacteria compared to either substance alone
    corecore