3 research outputs found
COVID-19 preparedness—a survey among neonatal care providers in low- and middle-income countries
Objective - To evaluate COVID-19 pandemic preparedness, available resources, and guidelines for neonatal care delivery among neonatal health care providers in low- and middle-income countries (LMICs) across all continents.
Study design - Cross-sectional, web-based survey administered between May and June, 2020.
Results - Of 189 invited participants in 69 LMICs, we received 145 (77%) responses from 58 (84%) countries. The pandemic provides significant challenges to neonatal care, particularly in low-income countries. Respondents noted exacerbations of preexisting shortages in staffing, equipment, and isolation capabilities. In Sub-Saharan Africa, 9/35 (26%) respondents noted increased mortality in non-COVID-19-infected infants. Clinical practices on cord clamping, isolation, and breastfeeding varied widely, often not in line with World Health Organization guidelines. Most respondents noted family access restrictions, and limited shared decision-making.
Conclusions - Many LMICs face an exacerbation of preexisting resource challenges for neonatal care during the pandemic. Variable approaches to care delivery and deviations from guidelines provide opportunities for international collaborative improvement
Validation of Correction Algorithms for Near-IR Analysis of Human Milk in an Independent Sample Set—Effect of Pasteurization
Commercial infrared (IR) milk analyzers are being increasingly used in research settings for the macronutrient measurement of breast milk (BM) prior to its target fortification. These devices, however, may not provide reliable measurement if not properly calibrated. In the current study, we tested a correction algorithm for a Near-IR milk analyzer (Unity SpectraStar, Brookfield, CT, USA) for fat and protein measurements, and examined the effect of pasteurization on the IR matrix and the stability of fat, protein, and lactose. Measurement values generated through Near-IR analysis were compared against those obtained through chemical reference methods to test the correction algorithm for the Near-IR milk analyzer. Macronutrient levels were compared between unpasteurized and pasteurized milk samples to determine the effect of pasteurization on macronutrient stability. The correction algorithm generated for our device was found to be valid for unpasteurized and pasteurized BM. Pasteurization had no effect on the macronutrient levels and the IR matrix of BM. These results show that fat and protein content can be accurately measured and monitored for unpasteurized and pasteurized BM. Of additional importance is the implication that donated human milk, generally low in protein content, has the potential to be target fortified