10 research outputs found
The Euphrates-Tigris-Karun river system: Provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate
We present a detailed sediment-provenance study on the modern Euphrates-Tigris-Karun fluvial system and Mesopotamian foreland basin, one of the cradles of humanity. Our rich petrographic and heavy-mineral dataset, integrated by sand geochemistry and U鈥揚b age spectra of detrital zircons, highlights the several peculiarities of this large source-to-sink sediment-routing system and widens the spectrum of compositions generally assumed as paradigmatic for orogenic settings. Comparison of classical static versus upgraded dynamic petrologic models enhances the power of provenance analysis, and allows us to derive a more refined conceptual model of reference and to verify the limitations of the approach. Sand derived from the Anatolia-Zagros orogen contains abundant lithic grains eroded from carbonates, cherts, mudrocks, arc volcanics, obducted ophiolites and ophiolitic m茅langes representing the exposed shallow structural level of the orogen, with relative scarcity of quartz, K-feldspar and mica. This quartz-poor petrographic signature, characterizing the undissected composite tectonic domain of the entire Anatolia-Iranian plateau, is markedly distinct from that of sand shed by more elevated and faster-eroding collision orogens such as the Himalaya. Arid climate in the region allows preservation of chemically unstable grains including carbonate rock fragments and locally even gypsum, and reduces transport capacity of fluvial systems, which dump most of their load in Mesopotamian marshlands upstream of the Arabian/Persian Gulf allochemical carbonate factory. Quartz-poor sediment from the Anatolia-Zagros orogen mixes with quartz-rich recycled sands from Arabia along the western side of the foreland basin, and is traced all along the Gulf shores as far as the Rub' al-Khali sand sea up to 4000聽km from Euphrates headwaters
Stratigraphic correlation and paleoenvironmental analysis of the hydrocarbon-bearing Early Miocene Euphrates and Jeribe formations in the Zagros folded-thrust belt
The Lower Miocene Euphrates and Jeribe formations are considered as the main targets of the Tertiary petroleum system in the western part of the Zagros Basin. The formations consist of carbonates with some evaporate intercalations of the Dhiban Formation. This study utilized data from a field investigation including newly described outcrop sections and newly discovered productive oil fields within the Kirkuk embayment zone of the Zagros fold and thrust belt such as Sarqala and Kurdamir wells. This work is the first to show a stratigraphic correlation and paleoenvironmental interpretation by investigating both well data and new outcrop data. Three depositional environments were identified, (1) an inner and outer ramp belts environment, (2) shoal environment, and (3) restricted lagoon environment. Within these 3 environments, 12 microfacies were identified, based on the distribution of fauna mainly benthonic foraminifera, rock textures, and sedimentary structures. The inferred shallow water depths and variable salinities in both the Euphrates Formation and Jeribe Formation carbonates are consistent with deposition on the inner ramp (restricted lagoon and shoal) environments. Those found in the Euphrates Formation constrained the depositional environment to the restricted lagoon and shoal environment, while the microfacies in the Jeribe Formation provided evidence for an inner ramp and middle to outer ramp belt environments. This study represents the first detailed research that focuses on the stratigraphic correlation and changes in carbonate facies with the main aim to provide a wider understanding of stratigraphy of these carbonate reservoirs throughout the northern part of Iraq