122 research outputs found

    Photosynthesis-controlled calcification in a hypersaline microbial mat

    Get PDF
    We investigated the hypothesis that sulfate reduction rather than oxygenic photosynthesis promotes calcification in a hypersaline microbial mat by increasing the ion concentration product: ICP 5 [Ca2+] X [CO32-]. Pore‐water 3 calcium concentration profiles directly measured with microsensors show that calcium concentration in the photic zone decreased in illuminated mats and increased slightly in dark mats. High pH values in the photic zone of illuminated mats resulted in higher carbonate concentrations (2.25 mmol L-1) than in dark mats (0.75 mmol L-1), although the dissolved inorganic carbon (DIC) pore‐water concentration in the former was much lower (5.9 mmol L-1) than in the latter (9.9 mmol L-1). The pH‐induced rise in carbonate concentration in the light was the main factor influencing the ICP, while changes in Ca-1 concentration played a subsidiary role. Sulfate reduction did not result in a net pH increase in these mats, as rates in the photic zone were comparable between illuminated and dark mats (4 and 5 nmol cm-2 h-1, respectively), and pH increased in illuminated mats but not in dark mats. Calcium carbonate precipitation in the photic zone of these hypersaline mats is primarily controlled by photosynthesisinduced pH and carbonate concentration increases. However, heterotrophic bacteria, including sulfate reducers, play an important complementary role in calcification because they maintain high concentrations of DIC in the mat pore water

    Effect of Various Local Anthropogenic Impacts on the Diversity of Coral Mucus-Associated Bacterial Communities

    Get PDF
    The global continued decline in coral reefs is intensifying the need to understand the response of corals to local environmental stressors. Coral-associated bacterial communities have been suggested to have a swift response to environmental pollutants. This study aims to determine the variation in the bacterial communities associated with the mucus of two coral species, Pocillopora damicornis (Linnaeus, 1758) and Stylophora pistillata (Esper, 1792), and the coral-surrounding seawater from three areas exposed to contamination at the Jordanian coast of the Gulf of Aqaba (Red Sea), and also explores the antibacterial activity of these bacteria. Corals were collected from three contaminated zones along the coast, and the bacteria were quantified and identified by conventional morphological and biochemical tests, as well as 16S rRNA gene sequencing. The average number of bacteria significantly varied among the coral mucus from the sampling zones and between the coral mucus and the surrounding seawater. The P. damicornis mucus-associated bacterial community was dominated by members of the classes Gammaproteobacteria, Cytophagia, and Actinomycetia, while the mucus of S. pistillata represented higher bacterial diversity, with the dominance of the bacterial classes Gammaproteobacteria, Actinomycetia, Alphaproteobacteria, and Bacilli. The effects of local anthropogenic impacts on coral mucus bacterial communities were represented in the increased abundance of bacterial species related to coral diseases. Furthermore, the results demonstrated the existence of bacterial isolates with antibacterial activity that possibly acted as a first line of defense to protect and maintain the coral host against pathogens. Indeed, the dynamics of coral-associated microbial communities highlight the importance of holistic studies that focus on microbial interactions across the coral reef ecosystem

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Live Tissue Imaging Shows Reef Corals Elevate pH under Their Calcifying Tissue Relative to Seawater

    Get PDF
    The threat posed to coral reefs by changes in seawater pH and carbonate chemistry (ocean acidification) raises the need for a better mechanistic understanding of physiological processes linked to coral calcification. Current models of coral calcification argue that corals elevate extracellular pH under their calcifying tissue relative to seawater to promote skeleton formation, but pH measurements taken from the calcifying tissue of living, intact corals have not been achieved to date. We performed live tissue imaging of the reef coral Stylophora pistillata to determine extracellular pH under the calcifying tissue and intracellular pH in calicoblastic cells. We worked with actively calcifying corals under flowing seawater and show that extracellular pH (pHe) under the calicoblastic epithelium is elevated by ∼0.5 and ∼0.2 pH units relative to the surrounding seawater in light and dark conditions respectively. By contrast, the intracellular pH (pHi) of the calicoblastic epithelium remains stable in the light and dark. Estimates of aragonite saturation states derived from our data indicate the elevation in subcalicoblastic pHe favour calcification and may thus be a critical step in the calcification process. However, the observed close association of the calicoblastic epithelium with the underlying crystals suggests that the calicoblastic cells influence the growth of the coral skeleton by other processes in addition to pHe modification. The procedure used in the current study provides a novel, tangible approach for future investigations into these processes and the impact of environmental change on the cellular mechanisms underpinning coral calcification

    Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    Get PDF
    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification

    Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia)

    Get PDF
    Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg calcite with ∼13 mol% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum in experiments varying temperature (19–32 °C) and pH (8.15–8.44). Alkalinity depletion caused by spicule formation systematically varied in the temperature experiments increasing from 19 to 29 °C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using ICP-OES, δ44/40Ca using TIMS, as well as δ18O and δ13C by IRMS. Mg/Ca increased with temperature from 146 to 164 mmol/mol, in good agreement with the range observed for marine inorganic calcite. Mg/Ca increased by 1.0 ± 0.4 mmol/mol/°C, similar to the sensitivity of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca and carbonate ion concentration of +0.03 ± 0.02 mmol/mol/μMol. Sr/Ca ranges from 2.5 to 2.9 mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be independent of the skeletal mineralogy. We observe no temperature trend, but a significant decrease of δ44/40Ca with increasing pH. This inverse correlation may characterise biologically controlled intracellular calcification. Oxygen isotope ratios are higher than expected for isotopic equilibrium with a temperature sensitivity of −0.15 ± 0.03‰/°C. Carbon isotope ratios are significantly lower than expected for equilibrium and positively correlated with temperature with a slope of 0.20 ± 0.04‰/°C. Many of our observations on trace element incorporation in R. fulvum may be explained by inorganic processes during crystal formation, which do not comply with the intracellular mode of calcification in Alcyonarian corals. The observed elemental and isotopic compositions, however, could be explained if the partitioning caused by biological mechanisms mimics the effects of inorganic processes

    Projected Changes to Growth and Mortality of Hawaiian Corals over the Next 100 Years

    Get PDF
    BACKGROUND: Recent reviews suggest that the warming and acidification of ocean surface waters predicated by most accepted climate projections will lead to mass mortality and declining calcification rates of reef-building corals. This study investigates the use of modeling techniques to quantitatively examine rates of coral cover change due to these effects. METHODOLOGY/PRINCIPAL FINDINGS: Broad-scale probabilities of change in shallow-water scleractinian coral cover in the Hawaiian Archipelago for years 2000-2099 A.D. were calculated assuming a single middle-of-the-road greenhouse gas emissions scenario. These projections were based on ensemble calculations of a growth and mortality model that used sea surface temperature (SST), atmospheric carbon dioxide (CO(2)), observed coral growth (calcification) rates, and observed mortality linked to mass coral bleaching episodes as inputs. SST and CO(2) predictions were derived from the World Climate Research Programme (WCRP) multi-model dataset, statistically downscaled with historical data. CONCLUSIONS/SIGNIFICANCE: The model calculations illustrate a practical approach to systematic evaluation of climate change effects on corals, and also show the effect of uncertainties in current climate predictions and in coral adaptation capabilities on estimated changes in coral cover. Despite these large uncertainties, this analysis quantitatively illustrates that a large decline in coral cover is highly likely in the 21(st) Century, but that there are significant spatial and temporal variances in outcomes, even under a single climate change scenario

    The Biology and Economics of Coral Growth

    Get PDF
    To protect natural coral reefs, it is of utmost importance to understand how the growth of the main reef-building organisms—the zooxanthellate scleractinian corals—is controlled. Understanding coral growth is also relevant for coral aquaculture, which is a rapidly developing business. This review paper provides a comprehensive overview of factors that can influence the growth of zooxanthellate scleractinian corals, with particular emphasis on interactions between these factors. Furthermore, the kinetic principles underlying coral growth are discussed. The reviewed information is put into an economic perspective by making an estimation of the costs of coral aquaculture
    corecore