15 research outputs found
Contribution of tocols to food Sensorial properties, stability, and overall quality
This paper reviews the contribution of tocopherols and tocotrienols (tocols) to food quality as well as their bioactivity and health-promoting properties, which have attracted researchers and food technologists. Tocols are lipophilic phenolic antioxidants encompassing tocopherols that are characterized by a saturated side chain and tocotrienols with an unsaturated isoprenoid side chain. Tocols are natural constituents of several foods like dairy, vegetable oils, nuts, and grains. Their presence in foods, namely, as food additives, helps prevent lipid oxidation, which negatively affects the sensorial quality of foods, and even the nutritional value and safety. Supplementation of animalsâ diets with tocopherols has proven its effectiveness in preserving fresh color and flavor of the meat. Although alfa-tocopherol displays much higher vitamin E activity than other tocols, health outcomes have been reported for tocotrienols, thus calling for more studies.info:eu-repo/semantics/publishedVersio
Composition and physicochemical properties of dried berry pomace
[EN] BACKGROUND Berry pomace is a valuable but little used by-product of juice manufacturing. When processed to a stable fruit powder, the composition differs from that of the whole fruit. To facilitate application in foods, a detailed knowledge of its composition and physicochemical properties is essential. RESULTS Blackcurrant, redcurrant, chokeberry, rowanberry and gooseberry were selected for analysis. All pomace powders had a high fibre content (> 550 g kg(-1)) and a fat content of up to 200 g kg(-1). Despite identical milling conditions, the particle sizes of the pomace powders varied. This can be traced back to seed content and brittleness, which also becomes apparent with respect to surface characteristics. Blackcurrant pomace powder differed from other varieties in terms of its low water-binding capacity (3.2 g g(-1)) and a moderate moisture uptake, whereas chokeberry pomace powder showed the highest polyphenol content and rowanberry pomace powder was rich in flavonols. CONCLUSION The results obtained in the present study provide a comprehensive overview of the properties of berry pomace powder and allow conclusions to be made regarding their applicability for use in complex food systems. (c) 2018 Society of Chemical IndustryThe research project was approved during the second SUSFOOD ERA-Net call (www.susfood-era.net).The funding of the project, assured through the national partner organizations, is gratefully acknowledged: Federal Ministry of Education and Research via PTJ in Germany (grant 031B0004), INIA in Spain and FORMAS in Sweden.Reibner, AM.; Al Hamimi, S.; Quiles ChuliĂĄ, MD.; Schmidt, C.; Struck, S.; Hernando Hernando, MI.; Turner, C.... (2018). Composition and physicochemical properties of dried berry pomace. Journal of the Science of Food and Agriculture. 99(3):1284-1293. https://doi.org/10.1002/jsfa.930212841293993Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411-421. doi:10.1016/j.foodchem.2010.06.077Ktenioudaki, A., & Gallagher, E. (2012). Recent advances in the development of high-fibre baked products. Trends in Food Science & Technology, 28(1), 4-14. doi:10.1016/j.tifs.2012.06.004McKee, L. H., & Latner, T. A. (2000). Plant Foods for Human Nutrition, 55(4), 285-304. doi:10.1023/a:1008144310986Dhillon, G. S., Kaur, S., & Brar, S. K. (2013). Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renewable and Sustainable Energy Reviews, 27, 789-805. doi:10.1016/j.rser.2013.06.046KohajdovĂĄ, Z., KaroviÄovĂĄ, J., & JurasovĂĄ, M. (2013). Influence of grapefruit dietary fibre rich powder on the rheological characteristics of wheat flour dough and on biscuit quality. Acta Alimentaria, 42(1), 91-101. doi:10.1556/aalim.42.2013.1.9Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace - a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology, 51(6), 1305-1318. doi:10.1111/ijfs.13112Skrede, G., Wrolstad, R. E., & Durst, R. W. (2000). Changes in Anthocyanins and Polyphenolics During Juice Processing of Highbush Blueberries (Vaccinium corymbosum L.). Journal of Food Science, 65(2), 357-364. doi:10.1111/j.1365-2621.2000.tb16007.xHoltung, L., Grimmer, S., & Aaby, K. (2011). Effect of Processing of Black Currant Press-Residue on Polyphenol Composition and Cell Proliferation. Journal of Agricultural and Food Chemistry, 59(8), 3632-3640. doi:10.1021/jf104427rOszmiaĆski, J., & Wojdylo, A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology, 221(6), 809-813. doi:10.1007/s00217-005-0002-5Viuda-Martos, M., LĂłpez-Marcos, M. C., FernĂĄndez-LĂłpez, J., Sendra, E., LĂłpez-Vargas, J. H., & PĂ©rez-Ălvarez, J. A. (2010). Role of Fiber in Cardiovascular Diseases: A Review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240-258. doi:10.1111/j.1541-4337.2009.00102.xEim, V. S., Simal, S., RossellĂł, C., & Femenia, A. (2008). Effects of addition of carrot dietary fibre on the ripening process of a dry fermented sausage (sobrassada). Meat Science, 80(2), 173-182. doi:10.1016/j.meatsci.2007.11.017SĂłjka, M., Miszczak, A., Sikorski, P., ZagibajĆo, K., KarliĆska, E., & Kosmala, M. (2015). Pesticide residue levels in strawberry processing by-products that are rich in ellagitannins and an assessment of their dietary risk to consumers. NFS Journal, 1, 31-37. doi:10.1016/j.nfs.2015.09.001European Commission EU pesticides database http://ec.europa.eu/foodOrtelli, D., Edder, P., & Corvi, C. (2004). Multiresidue analysis of 74 pesticides in fruits and vegetables by liquid chromatographyâelectrosprayâtandem mass spectrometry. Analytica Chimica Acta, 520(1-2), 33-45. doi:10.1016/j.aca.2004.03.037Rohm, H., Brennan, C., Turner, C., GĂŒnther, E., Campbell, G., Hernando, I., ⊠Kontogiorgos, V. (2015). Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based FoodsâA SUSFOOD Project. Foods, 4(4), 690-697. doi:10.3390/foods4040690Schmidt, C., Geweke, I., Struck, S., Zahn, S., & Rohm, H. (2017). Blackcurrant pomace from juice processing as partial flour substitute in savoury crackers: dough characteristics and product properties. International Journal of Food Science & Technology, 53(1), 237-245. doi:10.1111/ijfs.13639Tarrega, A., Quiles, A., Morell, P., Fiszman, S., & Hernando, I. (2017). Importance of consumer perceptions in fiber-enriched food products. A case study with sponge cakes. Food & Function, 8(2), 574-583. doi:10.1039/c6fo01022aĆ porin, M., Avbelj, M., KovaÄ, B., & MoĆŸina, S. S. (2017). Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Science and Technology International, 24(3), 251-263. doi:10.1177/1082013217745398Choi, Y.-S., Kim, Y.-B., Hwang, K.-E., Song, D.-H., Ham, Y.-K., Kim, H.-W., ⊠Kim, C.-J. (2016). Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poultry Science, 95(6), 1465-1471. doi:10.3382/ps/pew096Hilz, H., Bakx, E. J., Schols, H. A., & Voragen, A. G. J. (2005). Cell wall polysaccharides in black currants and bilberriesâcharacterisation in berries, juice, and press cake. Carbohydrate Polymers, 59(4), 477-488. doi:10.1016/j.carbpol.2004.11.002Tournas, V. H., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 105(1), 11-17. doi:10.1016/j.ijfoodmicro.2005.05.002Sivam, A. S., Sun-Waterhouse, D., Perera, C. O., & Waterhouse, G. I. N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chemistry, 131(3), 802-810. doi:10.1016/j.foodchem.2011.09.047Plaza, M., Abrahamsson, V., & Turner, C. (2013). Extraction and Neoformation of Antioxidant Compounds by Pressurized Hot Water Extraction from Apple Byproducts. Journal of Agricultural and Food Chemistry, 61(23), 5500-5510. doi:10.1021/jf400584fHernĂĄndez-CarriĂłn, M., Sanz, T., Hernando, I., Llorca, E., Fiszman, S. M., & Quiles, A. (2015). New formulations of functional white sauces enriched with red sweet pepper: a rheological, microstructural and sensory study. European Food Research and Technology, 240(6), 1187-1202. doi:10.1007/s00217-015-2422-1Rohm, H., & Jaros, D. (1996). Colour of hard cheese. Zeitschrift fïżœr Lebensmittel-Untersuchung und -Forschung, 203(3), 241-244. doi:10.1007/bf01192871Mutungi, C., Schuldt, S., Onyango, C., Schneider, Y., Jaros, D., & Rohm, H. (2011). Dynamic Moisture Sorption Characteristics of Enzyme-Resistant Recrystallized Cassava Starch. Biomacromolecules, 12(3), 660-671. doi:10.1021/bm101321qZahn, S., Forker, A., KrĂŒgel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. LWT - Food Science and Technology, 33(2), 72-79. doi:10.1006/fstl.1999.0595Raghavendra, S. N., Ramachandra Swamy, S. R., Rastogi, N. K., Raghavarao, K. S. M. S., Kumar, S., & Tharanathan, R. N. (2006). Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. Journal of Food Engineering, 72(3), 281-286. doi:10.1016/j.jfoodeng.2004.12.008Vagiri, M., & Jensen, M. (2017). Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chemistry, 217, 409-417. doi:10.1016/j.foodchem.2016.08.121SĂłjka, M., & KrĂłl, B. (2008). Composition of industrial seedless black currant pomace. European Food Research and Technology, 228(4), 597-605. doi:10.1007/s00217-008-0968-xSĂłjka, M., KoĆodziejczyk, K., & Milala, J. (2013). Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Industrial Crops and Products, 51, 77-86. doi:10.1016/j.indcrop.2013.08.051U.S. Department of Agriculture, Agricultural Research Service USDA National Nutrient Database for Standard Reference https://www.ars.usda.gov/National Institute for Health and Welfare, Fineli Finnish food composition database https://fineli.fi/fineli/en/indexWawer, I., Wolniak, M., & Paradowska, K. (2006). Solid state NMR study of dietary fiber powders from aronia, bilberry, black currant and apple. Solid State Nuclear Magnetic Resonance, 30(2), 106-113. doi:10.1016/j.ssnmr.2006.05.001German Society for Hygiene and Microbiology Mikrobiologische Richt- und Warnwerte zur Beurteilung von Lebensmitteln https://www.dghm-richt-warnwerte.de/deFazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667-675. doi:10.1016/j.fbp.2012.04.006Margraf, T., Karnopp, A. R., Rosso, N. D., & Granato, D. (2015). Comparison between Folin-Ciocalteu and Prussian Blue Assays to Estimate The Total Phenolic Content of Juices and Teas Using 96-Well Microplates. Journal of Food Science, 80(11), C2397-C2403. doi:10.1111/1750-3841.13077Sajewicz, M., Staszek, D., WrĂłbel, M. S., Waksmundzka-Hajnos, M., & Kowalska, T. (2012). The HPLC/DAD Fingerprints and Chemometric Analysis of Flavonoid Extracts from the Selected Sage (Salvia) Species. Chromatography Research International, 2012, 1-8. doi:10.1155/2012/230903ÄujiÄ, N., Savikin, K., Miloradovic, Z., Ivanov, M., Vajic, U.-J., Karanovic, D., ⊠Mihailovic-Stanojevic, N. (2018). Characterization of dried chokeberry fruit extract and its chronic effects on blood pressure and oxidative stress in spontaneously hypertensive rats. Journal of Functional Foods, 44, 330-339. doi:10.1016/j.jff.2018.02.027Gavrilova, V., KajdzÌanoska, M., Gjamovski, V., & Stefova, M. (2011). Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLCâDADâESI-MSn. Journal of Agricultural and Food Chemistry, 59(8), 4009-4018. doi:10.1021/jf104565yBochi, V. C., Godoy, H. T., & Giusti, M. M. (2015). Anthocyanin and other phenolic compounds in Ceylon gooseberry (Dovyalis hebecarpa) fruits. Food Chemistry, 176, 234-243. doi:10.1016/j.foodchem.2014.12.041Kylli, P., Nohynek, L., Puupponen-PimiaÌ, R., Westerlund-WikstroÌm, B., McDougall, G., Stewart, D., & Heinonen, M. (2010). Rowanberry Phenolics: Compositional Analysis and Bioactivities. Journal of Agricultural and Food Chemistry, 58(22), 11985-11992. doi:10.1021/jf102739vBrĂ€unlich, M., Slimestad, R., Wangensteen, H., Brede, C., Malterud, K., & Barsett, H. (2013). Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors. Nutrients, 5(3), 663-678. doi:10.3390/nu5030663Nakajima, J., Tanaka, I., Seo, S., Yamazaki, M., & Saito, K. (2004). LC/PDA/ESI-MS Profiling and Radical Scavenging Activity of Anthocyanins in Various Berries. Journal of Biomedicine and Biotechnology, 2004(5), 241-247. doi:10.1155/s1110724304404045Borges, G., Degeneve, A., Mullen, W., & Crozier, A. (2010). Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberriesâ . Journal of Agricultural and Food Chemistry, 58(7), 3901-3909. doi:10.1021/jf902263nLaroze, L. E., DĂaz-Reinoso, B., Moure, A., ZĂșñiga, M. E., & DomĂnguez, H. (2010). Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. European Food Research and Technology, 231(5), 669-677. doi:10.1007/s00217-010-1320-9Rakic, V., Ota, A., Skrt, M., Miljkovic, M., Kostic, D., Sokolovic, D., & Poklar-Ulrih, N. (2015). Investigation of fluorescence properties of cyanidin and cyanidin 3-o-ÎČ-glucopyranoside. Hemijska industrija, 69(2), 155-163. doi:10.2298/hemind140203030rRaghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. doi:10.1007/s00217-004-0889-2Kosmala, M., KoĆodziejczyk, K., Markowski, J., Mieszczakowska, M., Ginies, C., & Renard, C. M. G. C. (2010). Co-products of black-currant and apple juice production: Hydration properties and polysaccharide composition. LWT - Food Science and Technology, 43(1), 173-180. doi:10.1016/j.lwt.2009.06.016Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33(3-4), 233-245. doi:10.1016/s0963-9969(00)00038-7Rosell, C. M., Santos, E., & Collar, C. (2009). Physico-chemical properties of commercial fibres from different sources: A comparative approach. Food Research International, 42(1), 176-184. doi:10.1016/j.foodres.2008.10.003Yalegama, L. L. W. C., Nedra Karunaratne, D., Sivakanesan, R., & Jayasekara, C. (2013). Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel. Food Chemistry, 141(1), 124-130. doi:10.1016/j.foodchem.2013.02.118Selani, M. M., Brazaca, S. G. C., dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry, 163, 23-30. doi:10.1016/j.foodchem.2014.04.076Figuerola, F., Hurtado, M. L., EstĂ©vez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036KohajdovĂĄ, Z., KaroviÄovĂĄ, J., Magala, M., & KuchtovĂĄ, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8). doi:10.2478/s11696-014-0567-1CHEN, J. Y., PIVA, M., & LABUZA, T. P. (1984). Evaluation of Water Binding Capacity (WBC) of Food Fiber Sources. Journal of Food Science, 49(1), 59-63. doi:10.1111/j.1365-2621.1984.tb13668.xTimmermann, E. O. (1989). A B. E. T.-like three sorption stage isotherm. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85(7), 1631. doi:10.1039/f19898501631Witczak, T., Witczak, M., Socha, R., StÄPieĆ, A., & Grzesik, M. (2016). Candied Orange Peel Produced in Solutions with Various Sugar Compositions: Sugar Composition and Sorption Properties of the Product. Journal of Food Process Engineering, 40(2), e12367. doi:10.1111/jfpe.12367Tsami, E., Krokida, M. K., & Drouzas, A. E. (1998). Effect of drying method on the sorption characteristics of model fruit powders. Journal of Food Engineering, 38(4), 381-392. doi:10.1016/s0260-8774(98)00130-7Oliveira, D. E. C. de, Resende, O., Costa, L. M., Ferreira JĂșnior, W. N., & Igor O. F., S. (2017). Hygroscopicity of baru (Dipteryx alata Vogel) fruit. Revista Brasileira de Engenharia AgrĂcola e Ambiental, 21(4), 279-284. doi:10.1590/1807-1929/agriambi.v21n4p279-284Ribeiro, L. C., Costa, J. M. C. da, & Afonso, M. R. A. (2016). Hygroscopic behavior of lyophilized acerola pulp powder. Revista Brasileira de Engenharia AgrĂcola e Ambiental, 20(3), 269-274. doi:10.1590/1807-1929/agriambi.v20n3p269-274Struck, S., Straube, D., Zahn, S., & Rohm, H. (2018). Interaction of wheat macromolecules and berry pomace in model dough: Rheology and microstructure. Journal of Food Engineering, 223, 109-115. doi:10.1016/j.jfoodeng.2017.12.01
Dynamic extraction coupled on-line to liquid chromatography with a parallel sampling interfaceâa proof of concept for monitoring extraction kinetics
On-line hyphenation of extraction with chromatography has been explored in several different types of combinations. However, monitoring the complete process of a dynamic, continuous-flow extraction is not possible with any hyphenated system reported so far. The current work demonstrates that this challenging task can be effectively fulfilled by using a parallel sampling interface, which mimics the concept of comprehensive two-dimensional chromatography. In this study, pressurised hot water extraction was coupled on-line with ultra-high-performance liquid chromatography. The set-up was utilised in a kinetic study of dynamic pressurised hot water extraction of curcuminoids from turmeric powder. Compound-specific extraction curves were obtained, which clearly indicated the rate-limiting factors of the extraction processes under different conditions. Additionally, thermal degradation of curcumin during the extraction could also be demonstrated in some of the extractions
Dynamic extraction coupled on-line to liquid chromatography with a parallel sampling interfaceâa proof of concept for monitoring extraction kinetics
On-line hyphenation of extraction with chromatography has been explored in several different types of combinations. However, monitoring the complete process of a dynamic, continuous-flow extraction is not possible with any hyphenated system reported so far. The current work demonstrates that this challenging task can be effectively fulfilled by using a parallel sampling interface, which mimics the concept of comprehensive two-dimensional chromatography. In this study, pressurised hot water extraction was coupled on-line with ultra-high-performance liquid chromatography. The set-up was utilised in a kinetic study of dynamic pressurised hot water extraction of curcuminoids from turmeric powder. Compound-specific extraction curves were obtained, which clearly indicated the rate-limiting factors of the extraction processes under different conditions. Additionally, thermal degradation of curcumin during the extraction could also be demonstrated in some of the extractions
High density supercritical carbon dioxide for the extraction of pesticide residues in onion with multivariate response surface methodology
The excessive use of pesticides is a serious health problem due to their toxicity and bioaccumulation through the food chain. Due to the complexity of foods, the analysis of pesticides is challenging often giving large matrix effects and coâextracted compounds. To overcome this problem, a selective and âgreenâ supercritical fluid extraction method was developed, using neat carbon dioxide as a solvent at pressures of up to 800 bars. A BoxâBehnken response surface experimental design was used, with the independent variables of density (0.70â1.0 g mLâ1), temperature (40â70 °C), and volume (10â40 mL) of solvent, and the dependent variable of extracted amount of pesticides. The optimum extraction condition was found at the use of 29 mL of supercritical CO2 at 0.90 g mLâ1 and 53°C (corresponding to 372 bars of pressure). It was observed that increasing the density of CO2 significantly increased the extraction recovery of endrin and 2,4âČ-dichlorodiphenyldichloroethane. Matrixâmatched calibration curves showed satisfactory linearity (R2 â„ 0.994), and LODs ranged from 0.2 to 2.0 ng gâ1. Precision was lower than 11% and recoveries between 80%â103%. Thus, the developed method could efficiently be used for trace analysis of pesticides in complex food matrices without the use of organic solvents
Ultrahigh-pressure supercritical fluid extraction and chromatography of Moringa oleifera and Moringa peregrina seed lipids
An ultrahigh-pressure supercritical fluid extraction method was optimized and applied to extract seed oil lipids from two moringa species, namely Moringa oleifera (MO) and Moringa peregrina (MP). A full-factorial design was used to investigate the direct and interaction influence of pressure and temperature in the range of 40 to 80 MPa and 40 to 70 °C, respectively, on the extracted amount of oil from crushed seeds. The results revealed that pressure has a significant positive influence on the extracted amount of oil. The best extraction condition using neat CO 2 was found at 80 MPa and 57 °C, yielding 396 ± 23 and 529 ± 26 mg oil per gram of seeds for MO and MP, respectively. An extraction kinetics study revealed a mainly solubility-controlled extraction of oil, and 28 g of CO 2 was required to extract 400 mg of oil per gram of seeds of MO using the developed method. Addition of ethanol to the sample prior to the extraction increased the proportion of extractable polar lipids as well as the total amount of extracted oil. The developed method increased the extracted amount of oil twofold compared to a reference method based on solvent sonication. The obtained oil consisted mainly of glycerolipids, sterol esters, and phospholipids. Phospholipids, campesterol, and stigmasterol ester concentrations were found to be higher in MO while cholesterol ester was more abundant in MP
Screening of stationary phase selectivities for global lipid profiling by ultrahigh performance supercritical fluid chromatography
The performance of seven sub-2-ÎŒm particle packed columns (2-picolylamine, 2-PIC; charged surface hybrid fluoro-phenyl, CSH-FP; high strength silica C18 SB, HSS-C18; diethylamine, DEA; 1-aminoanthracene, 1-AA; high density diol and ethylene bridged hybrid; BEH) was examined for lipid separation in ultra-high performance supercritical fluid chromatography (UHPSFC) coupled to quadrupole time-of-flight mass spectrometry. Based on the results of the column screening a method for profiling of multiple lipid species from the major lipid classes was developed. Stationary phases containing ÎČ-hydroxy amines, i.e. 1-AA, DEA and 2-PIC, yielded strong retention and poor peak shapes of zwitterionic lipids with primary amine groups, such as phosphatidylserines, phosphatidylethanolamines and its lyso forms. The BEH and HSS-C18 columns showed strong retention of polar and nonpolar lipids, respectively. The Diol column retained the majority of major lipid classes and also produced symmetric peaks. In addition, this column also produced the highest resolution within and between major lipid classes. An injection solvent composed of methanol:chloroform (1:2, v:v) and the addition of 20 mM ammonium formate in the mobile phase improved chromatographic separation and mass spectrometry detection in comparison to ammonium acetate or absence of additive. Finally, chromatographic and mass spectrometric parameters were optimized for the Diol column using a design of experiments approach. The separation mechanism on the Diol column depended on the lipid functionality and the length and degree of unsaturation of the acyl groups. The developed method could resolve 18 lipid classes and multiple lipids within each class, from blood serum and brain tissue in 11 min
Solubility and Thermal Degradation of Quercetin in CO2-Expanded Liquids
The solubility of quercetin and its thermal degradation was studied in CO2-expanded ethanol and ethyl lactate. An equipment setup was constructed that enabled the separation of the products of degradation while quantifying the solubility of quercetin. Three different conditions of temperature were analyzed (308, 323, and 343 K) at 10 MPa. Higher solubility and thermal degradation of quercetin were observed for CO2-expanded ethyl lactate in comparison with CO2-expanded ethanol. At the same time, as the amount of CO2 was increased in the CO2-expanded liquids mixtures, the thermal degradation of quercetin decreased for almost all the conditions of temperature considered in this work. The importance of considering thermal degradation while performing solubility measurements of compounds that are thermally unstable such as quercetin was highlighted
Multivariate optimization of a combined static and dynamic supercritical fluid extraction method for trace analysis of pesticides pollutants in organic honey
The intensive application of pesticides to increase crop production has resulted in contamination of the agricultural products. Due to their occurrence at trace levels and the complexity of food samples, analysis of pesticide residues requires selective and efficient sample preparation methods. For this purpose, an extraction method based on supercritical carbon dioxide and acetonitrile as entrainer solvent was developed for trace analysis of atrazine, diazinon, chlorothalonil, and deltamethrin pesticides in honey samples. A BoxâBehnken experimental design was applied to optimize extraction variables including static extraction time (5â15 min), pressure (200â700 bar), and temperature (45â70°C). The optimum extraction conditions were found to be 11.5 min static extraction time, 252 bar, and 70°C. The proposed analytical method showed a good linearity (â„0.998), low limit of detection (0.005â0.009 mg/kg), and good extraction recovery (74â111%). The precision study of the proposed method at two concentration levels of each pesticides, 0.25 and 1.0 mg/kg was found to be in the ranges of 2.3â4.21% for intraday (n = 3) and 3.93â8.02% for interday precisions (n = 3). The developed method is promising for use in trace analysis of pesticides in complex food samples including honey