2 research outputs found

    Changes in duodenal tissue-associated microbiota following hookworm infection and consecutive gluten challenges in humans with coeliac disease

    Get PDF
    A reduced diversity of the gastrointestinal commensal microbiota is associated with the development of several inflammatory diseases. Recent reports in humans and animal models have demonstrated the beneficial therapeutic effects of infections by parasitic worms (helminths) in some inflammatory disorders, such as inflammatory bowel disease (IBD) and coeliac disease (CeD). Interestingly, these studies have described how helminths may alter the intestinal microbiota, potentially representing a mechanism by which they regulate inflammation. However, for practical reasons, these reports have primarily analysed the faecal microbiota. In the present investigation, we have assessed, for the first time, the changes in the microbiota at the site of infection by a parasitic helminth (hookworm) and gluten-dependent inflammation in humans with CeD using biopsy tissue from the duodenum. Hookworm infection and gluten exposure were associated with an increased abundance of species within the Bacteroides phylum, as well as increases in the richness and diversity of the tissue-resident microbiota within the intestine, results that are consistent with previous reports using other helminth species in humans and animal models. Hence, this may represent a mechanism by which parasitic helminths may restore intestinal immune homeostasis and exert a therapeutic benefit in CeD, and potentially other inflammatory disorders.This work was supported by grants 613718 to P.G., and 1037304 and 1020114 to A.L. from the National Health and Medical Research Council of Australia (NHMRC), and by the Royal Society and the Isaac Newton Trust/Wellcome Trust ISSF/University of Cambridge Joint Research Grants Scheme to C.C. T.J. is supported by scholarships from the Biotechnology and Biological Sciences Research Council (BBSRC) Doctoral Training Partnerships program

    Polypyridylruthenium(II) complexes exert in vitro and in vivo nematocidal activity and show significant inhibition of parasite acetylcholinesterases

    Get PDF
    Over 4.5 billion people are at risk of infection with soil transmitted helminths and there are concerns about the development of resistance to the handful of frontline nematocides in endemic populations. We investigated the anti-nematode efficacy of a series of polypyridylruthenium(II) complexes and showed they were active against L3 and adult stages of Trichuris muris, the rodent homologue of the causative agent of human trichuriasis, T. trichiura. One of the compounds, Rubb12-mono, which was among the most potent in its ability to kill L3 (IC50 = 3.1 ± 0.4 μM) and adult (IC50 = 5.2 ± 0.3 μM) stage worms was assessed for efficacy in a mouse model of trichuriasis by administering 3 consecutive daily oral doses of the drug 3 weeks post infection with the murine whipworm Trichuris muris. Mice treated with Rubb12-mono showed an average 66% reduction (P = 0.015) in faecal egg count over two independent trials. The drugs partially exerted their activity through inhibition of acetylcholinesterases, as worms treated in vitro and in vivo showed significant decreases in the activity of this class of enzymes. Our data show that ruthenium complexes are effective against T. muris, a model gastro-intestinal nematode and soil-transmitted helminth. Further, knowledge of the target of ruthenium drugs can facilitate modification of current compounds to identify analogues which are even more effective and selective against Trichuris and other helminths of human and veterinary importance.Madhu Sundaraneedi, , Ramon M. Eichenberger, Rafid Al-Hallaf, Dai Yang, Javier Sotillo, Siji Rajan, Phurpa Wangchuk, Paul R. Giacomin, F. Richard Keene, Alex Loukas, J. Grant Collinsa, Mark S. Pearso
    corecore