730 research outputs found

    Enabling Cognitive Smart Cities Using Big Data and Machine Learning: Approaches and Challenges

    Full text link
    The development of smart cities and their fast-paced deployment is resulting in the generation of large quantities of data at unprecedented rates. Unfortunately, most of the generated data is wasted without extracting potentially useful information and knowledge because of the lack of established mechanisms and standards that benefit from the availability of such data. Moreover, the high dynamical nature of smart cities calls for new generation of machine learning approaches that are flexible and adaptable to cope with the dynamicity of data to perform analytics and learn from real-time data. In this article, we shed the light on the challenge of under utilizing the big data generated by smart cities from a machine learning perspective. Especially, we present the phenomenon of wasting unlabeled data. We argue that semi-supervision is a must for smart city to address this challenge. We also propose a three-level learning framework for smart cities that matches the hierarchical nature of big data generated by smart cities with a goal of providing different levels of knowledge abstractions. The proposed framework is scalable to meet the needs of smart city services. Fundamentally, the framework benefits from semi-supervised deep reinforcement learning where a small amount of data that has users' feedback serves as labeled data while a larger amount is without such users' feedback serves as unlabeled data. This paper also explores how deep reinforcement learning and its shift toward semi-supervision can handle the cognitive side of smart city services and improve their performance by providing several use cases spanning the different domains of smart cities. We also highlight several challenges as well as promising future research directions for incorporating machine learning and high-level intelligence into smart city services.Comment: 7 pages, 5 figures and 1 table. Final version is published in IEEE Communications Magazin

    Investigating IoT Middleware Platforms for Smart Application Development

    Full text link
    With the growing number of Internet of Things (IoT) devices, the data generated through these devices is also increasing. By 2030, it is been predicted that the number of IoT devices will exceed the number of human beings on earth. This gives rise to the requirement of middleware platform that can manage IoT devices, intelligently store and process gigantic data generated for building smart applications such as Smart Cities, Smart Healthcare, Smart Industry, and others. At present, market is overwhelming with the number of IoT middleware platforms with specific features. This raises one of the most serious and least discussed challenge for application developer to choose suitable platform for their application development. Across the literature, very little attempt is done in classifying or comparing IoT middleware platforms for the applications. This paper categorizes IoT platforms into four categories namely-publicly traded, open source, developer friendly and end-to-end connectivity. Some of the popular middleware platforms in each category are investigated based on general IoT architecture. Comparison of IoT middleware platforms in each category, based on basic, sensing, communication and application development features is presented. This study can be useful for IoT application developers to select the most appropriate platform according to their application requirement
    corecore