24 research outputs found

    Application of PSO to Design UPFC-based Stabilizers

    Get PDF
    Today, power demand grows rapidly and expansion in transmission and generation is restricted with the limited availability of resources and the strict environmental constraints. Consequently, power systems are today much more loaded than before. In addition, interconnection between remotely located power systems turned out to be a common practice. These give rise to low frequency oscillations in the range of 0.1-3.0 Hz. If not well damped, these oscillations may keep growing in magnitude until loss of synchronism results. Power system stabilizers (PSSs) have been used in the last few decades to serve the purpose of enhancing power system damping to low frequency oscillations. PSSs have proved to be efficient in performing their assigned tasks. The objective of this chapter is to investigate the potential of particle swarm optimization as a tool in designing UPFC-based stabilizers to improve power system transient stability. To estimate the controllability of each of the UPFC control signals on the electromechanical modes, singular value decomposition is employed. The problem of designing all the UPFCbased stabilizers individually is formulated as an optimization problem. Particle swarm optimizer is utilized to search for the optimum stabilizer parameter settings that optimize a given objective function. Coordinated design of the different stabilizers is also carried out by finding the best parameter settings for more than one stabilizer at a given operating condition in a coordinated manner

    Simultaneous Stabilization Of Power System Using UPFC-Based Controllers

    Get PDF
    This article studies the use of robust UPFC-based stabilizers to damp low frequency oscillations. The potential of the UPFC-based stabilizers to enhance the dynamic stability is evaluated by singular value decomposition. Particle swarm optimization technique is used to optimize the parameters of each stabilizer, first individually, then concurrently. To ensure the robustness of the proposed stabilizers, the design process considers a wide range of operating conditions. The effectiveness of the proposed controllers is verified through several linear and nonlinear analysis techniques. These techniques prove that the coordinated design of UPFC-based stabilizers is superior over any of the individual designs

    Simultaneous Stabilization Of Power System Using UPFC-Based Controllers

    Get PDF
    This article studies the use of robust UPFC-based stabilizers to damp low frequency oscillations. The potential of the UPFC-based stabilizers to enhance the dynamic stability is evaluated by singular value decomposition. Particle swarm optimization technique is used to optimize the parameters of each stabilizer, first individually, then concurrently. To ensure the robustness of the proposed stabilizers, the design process considers a wide range of operating conditions. The effectiveness of the proposed controllers is verified through several linear and nonlinear analysis techniques. These techniques prove that the coordinated design of UPFC-based stabilizers is superior over any of the individual designs

    Primary Raynaud's phenomenon in an infant: a case report and review of literature

    Get PDF
    Raynaud's phenomenon (RP) is an extremely unusual finding in early infancy. In the present report we describe a one-month-old previously healthy male infant who presented with unilateral acrocyanosis. Although infantile acrocyanosis is known to be a benign and self-resolving condition, it is generally bilateral and symmetric. The unilateral nature of the acrocyanosis was an atypical finding in this infant. Consequently, he was closely monitored to evaluate the progression of his acrocyanosis. Based on his benign clinical course and failure to demonstrate other etiologies contributing to his acrocyanosis, he was diagnosed to have primary RP. Due to the rarity of RP in children, we review the progress in understanding the pathophysiology, epidemiology and management of RP and additionally discuss the differential diagnosis of unilateral and bilateral acrocyanosis in infants

    Analysis and design of UPFC damping stabilizers for power system stability enhancement

    No full text
    In this paper, the use of the supplementary controller of a unified power flow controller (UPFC) to damp low frequency oscillations in a weakly connected system is investigated. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated. Two different objective functions are proposed in this work for the controller design problem. The first objective is eigenvaluebased while the second is time domain-based objective function. The UPFC controller design problem is solved using particle swarm optimization (PSO) technique. The effectiveness of the proposed controllers on damping low frequency oscillations is tested and demonstrated through non-linear time simulation. In addition, a comparison between the objectives is carried out. It can be concluded that the time domain-based design improves greatly the system response under fault disturbances

    Simultaneous Design of Damping Controllers and Internal Controllers of a Unified Power Flow Controller

    No full text
    Power system stability enhancement via coordinated design of power system stabilizers (PSSs) and STATCOM-based damping stabilizers is thoroughly investigated in this paper. This study presents a singular value decomposition (SVD) based approach to assess and measure the controllability of the poorly damped electromechanical modes by different control inputs. The Coordination among the proposed damping stabilizers and the STATCOM internal AC and DC voltage controllers has been taken into consideration. The design problem of STATCOM-based stabilizers is formulated as an optimization problem. Then, a real-coded genetic algorithm (RCGA) is employed to search for optimal stabilizer parameters. The nonlinear simulation results show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions

    Analysis and design of UPFC damping stabilizers for power system stability enhancement

    No full text
    In this paper, the use of the supplementary controller of a unified power flow controller (UPFC) to damp low frequency oscillations in a weakly connected system is investigated. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated. Two different objective functions are proposed in this work for the controller design problem. The first objective is eigenvaluebased while the second is time domain-based objective function. The UPFC controller design problem is solved using particle swarm optimization (PSO) technique. The effectiveness of the proposed controllers on damping low frequency oscillations is tested and demonstrated through non-linear time simulation. In addition, a comparison between the objectives is carried out. It can be concluded that the time domain-based design improves greatly the system response under fault disturbances
    corecore