6 research outputs found
A comparative analysis of convolutional neural networks for breast cancer prediction
Breast cancer continues to be a substantial worldwide health concern, affecting millions of individuals each year; this emphasizes the critical nature of early detection in order to enhance patient prognoses. The present study aims to assess the classification performance of three convolutional neural network (CNN) architectures-visual geometry group 19 (VGG19), AlexNet, and residual network 50 (ResNet50)-with respect to breast cancer detection in medical images. Thorough assessments, encompassing metrics such as accuracy, precision, recall, and F-score, were undertaken to evaluate the diagnostic performance of the models. ResNet50 consistently outperforms other models, as evidenced by its highest accuracy and F-score. The research highlights the significant importance of carefully choosing suitable architectures for medical image analysis, with a specific focus on the detection of breast cancer. In addition, it demonstrates the capacity of deep learning models, such as ResNet50, to improve the diagnosis of breast cancer with exceptional precision and sensitivity, which is critical for reducing the occurrence of false positives and negatives in clinical environments. In addition, computational efficiency is taken into account; AlexNet is recognized as the most efficient model, which is advantageous in environments with limited resources. This study advances medical image processing by demonstrating the potential of CNNs in the detection of breast cancer. The results of this study establish a fundamental basis for sub- sequent inquiries and suggest approaches to improve timely detection and treatment, which will ultimately be advantageous for both patients and healthcare professionals
Fortifying network security: machine learning-powered intrusion detection systems and classifier performance analysis
Intrusion detection systems (IDS) protect networks from threats; they actively monitor network activity to identify and prevent malicious actions. This study investigates the application of machine learning methods to strengthen IDS, explicitly emphasizing the comprehensive CICIDS 2017 dataset. The dataset was refined by implementing stringent preprocessing methods such as feature normalization, class imbalance management, feature reduction, and feature selection to ensure its quality and lay the foundation for developing robust models. The performance evaluation of three classifiers-support vector machine (SVM), extreme gradient boosting (XGBoost), and naive Bayes was highly impressive. Vital accuracy, precision, recall, and F1-score values of 0.984389, 0.984479, 0.984375, and 0.984304, respectively, were achieved by SVM. Notably, XGBoost demonstrated exceptional performance across all metrics, attaining flawless scores of 1.0. naive Bayes demonstrated noteworthy accuracy, precision, recall, and F1-score performance, which were recorded as 0.877392, 0.907171, 0.877007, and 0.876986, respectively. The results of this study emphasize the critical importance of preparation methods in improving the effectiveness of IDS via machine learning. This further demonstrates the potential of particular classifiers to detect and prevent network intrusions efficiently, thereby substantially contributing to cybersecurity measures
Clinical Text Classification with Word Representation Features and Machine Learning Algorithms
Clinical text classification of electronic medical records is a challenging task. Existing electronic records suffer from irrelevant text, misspellings, semantic ambiguity, and abbreviations. The approach reported in this paper elaborates on machine learning techniques to develop an intelligent framework for classification of the medical transcription dataset. The proposed approach is based on four main phases: the text preprocessing phase, word representation phase, features reduction phase and classification phase. We have used four machine learning algorithms, support vector machines, naïve bayes, logistic regression and k-nearest neighbors in combination with different word representation models. We have applied the four algorithms to the bag of words, to TF-IDF, to word2vec. Experimental results were evaluated based on precision, recall, accuracy and F1 score. The best results were obtained with the combination of the k-NN classifier, and the word represented by Word2vec achieving an accuracy of 92% to correctly classify the medical specialties based on the transcription text
Predictive modeling for breast cancer based on machine learning algorithms and features selection methods
Breast cancer is one of the leading causes of death among women worldwide. However, early prediction of breast cancer plays a crucial role. Therefore, strong needs exist for automatic accurate early prediction of breast cancer. In this paper, machine learning (ML) classifiers combined with features selection methods are used to build an intelligent tool for breast cancer prediction. The Wisconsin diagnostic breast cancer (WDBC) dataset is used to train and test the model. Classification algorithms, including support vector machine (SVM), light gradient boosting machine (LightGBM), random forest (RF), logistic regression (LR), k-nearest neighbors (k-NN), and naïve Bayes, were employed. Performance measures for each of them were obtained, namely: accuracy, precision, recall, F-score, Kappa, Matthews correlation coefficient (MCC), and time. The results indicate that without feature selection, LightGBM achieves the highest accuracy at 95%. With minimum redundancy maximum relevance (mRMR) feature selection (15 features), LightGBM outperforms other classifiers, achieving an accuracy of 98%. For Pearson correlation coefficient feature selection (15 features), LightGBM also excels with a 95% accuracy rate. Lasso feature selection (5 features) produces varied results across classifiers, with logistic regression achieving the highest accuracy at 96%. These findings underscore the importance of feature selection in refining model performance and in improving detection for breast cancer