3 research outputs found

    The Significance of Wind Turbines Layout Optimization on the Predicted Farm Energy Yield

    Get PDF
    Securing energy supply and diversifying the energy sources is one of the main goals of energy strategy for most countries. Due to climate change, wind energy is becoming increasingly important as a method of CO2-free energy generation. In this paper, a wind farm with five turbines located in Jerash, a city in northern Jordan, has been designed and analyzed. Optimization of wind farms is an important factor in the design stage to minimize the cost of wind energy to become more competitive and economically attractive. The analyses have been carried out using the WindFarm software to examine the significance of wind turbines’ layouts (M, straight and arch shapes) and spacing on the final energy yield. In this research, arranging the turbines facing the main wind direction with five times rotor diameter distance between each turbine has been simulated, and has resulted in 22.75, 22.87 and 21.997 GWh/year for the M shape, Straight line and Arch shape, respectively. Whereas, reducing the distance between turbines to 2.5 times of the rotor diameter (D) resulted in a reduction of the wind farm energy yield to 22.68, 21.498 and 21.5463 GWh/year for the M shape, Straight line and Arch shape, respectively. The energetic efficiency gain for the optimized wind turbines compared to the modeled layouts regarding the distances between the wind turbines. The energetic efficiency gain has been in the range between 8.9% for 5D (rotor diameter) straight layout to 15.9% for 2.5D straight layout

    Potential and Feasibility Study of Hybrid Wind−Hydroelectric Power System with Water-Pumping Storage: Jordan as a Case Study

    Get PDF
    Periodic daily fluctuating demand for energy and power is a perceptible phenomenon, resulting in some moments of low demand for power and energy related to the huge energy comes from renewable energy systems, and some moments of peak load demand. This phenomenon, when combined with the non-stationary operation of huge capacity of renewable energy systems, results in no stability of voltage and frequency. To assure continuous network stability and to avoid energy losses from renewable energy systems that are subject to such control system, a hybrid system with energy–power storage in the form of pumped-hydro storage is considered the most suitable technically. This paper presents the design, modeling, analysis, and feasibility study of a hybrid wind and water-pumping storage system. The system was designed and analyzed for King Talal Dam (KTD), which is in Northern Jordan. The importance of this study is that it is directed mainly to Jordan and the Middle East and North Africa (MENA) region in general. The Jordanian renewable energy market is a promising arena that encourages developers, investors, engineers, and companies to develop and install pure renewable energy systems and renewable energy hybrid projects for the generation of electricity. The analysis of wind data is carried out using the “windfarm” software with 5.16 m/s as average wind speed. It is followed by the design of the hybrid system, which is simulated for a daily operation of 2–3 h as peak load hours. Based on the technical outcomes, cost study and feasibility analyses are carried out with Jordanian market prices. The total estimated annual energy production is 26,663,933 kWh from 10 MW wind farm and 5.2 MW pumping storage system. The aforementioned studies showed that a similar hybrid system is not always fully commercially feasible. However, a pure pumped-storage system proved to be technically feasible and assisting the grid. The whole project analysis determines that such a system boosts the operational stability of the grid, increases the penetration of renewable energy systems and reduces the energy import. In addition, 15,100,000 tons of CO2-equivalent is estimated as annual emissions reduction in this study.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische UniversitĂ€t Berli

    The Significance of Wind Turbines Layout Optimization on the Predicted Farm Energy Yield

    No full text
    Securing energy supply and diversifying the energy sources is one of the main goals of energy strategy for most countries. Due to climate change, wind energy is becoming increasingly important as a method of CO2-free energy generation. In this paper, a wind farm with five turbines located in Jerash, a city in northern Jordan, has been designed and analyzed. Optimization of wind farms is an important factor in the design stage to minimize the cost of wind energy to become more competitive and economically attractive. The analyses have been carried out using the WindFarm software to examine the significance of wind turbines’ layouts (M, straight and arch shapes) and spacing on the final energy yield. In this research, arranging the turbines facing the main wind direction with five times rotor diameter distance between each turbine has been simulated, and has resulted in 22.75, 22.87 and 21.997 GWh/year for the M shape, Straight line and Arch shape, respectively. Whereas, reducing the distance between turbines to 2.5 times of the rotor diameter (D) resulted in a reduction of the wind farm energy yield to 22.68, 21.498 and 21.5463 GWh/year for the M shape, Straight line and Arch shape, respectively. The energetic efficiency gain for the optimized wind turbines compared to the modeled layouts regarding the distances between the wind turbines. The energetic efficiency gain has been in the range between 8.9% for 5D (rotor diameter) straight layout to 15.9% for 2.5D straight layout
    corecore