30 research outputs found

    Thrombin generation assays:Accruing clinical relevance

    Get PDF

    Access and quality of biomarker testing for precision oncology in Europe

    Full text link
    BACKGROUND Predictive biomarkers are essential for selecting the best therapeutic strategy in patients with cancer. The International Quality Network for Pathology, the European Cancer Patient Coalition and the European Federation of Pharmaceuticals Industries and Associations evaluated the access to and quality of biomarker testing across Europe. METHODS Data sources included surveys of 141 laboratory managers and 1.665 patients, and 58 in-depth interviews with laboratory managers, physicians and payers. Four access metrics (laboratory access, test availability, test reimbursement, test order rate) and three quality metrics (quality scheme participation, laboratory accreditation, test turnaround time) were applied to rank the results. RESULTS The access to precision medicines is higher in countries with public national reimbursement processes in place. Lack of diagnostic laboratory infrastructure, inefficient organization and/or insufficient public reimbursement narrow the access to single biomarker tests in many European countries. In countries with limited public reimbursement, pharma and patients' out of pocket were the primary funding sources for testing. Uptake of multi-biomarker next generation sequencing (NGS) is highly varied, ranging from 0% to >50%. Financial constraints, a lack of NGS testing capabilities and the failure to include NGS testing in the guidelines represent the main barriers to NGS implementation. The quality of biomarker testing is highest in Western and Northern Europe, with more than 90% of laboratories participating in quality assurance schemes. CONCLUSIONS Our data clearly indicate the need for a call to action to ensure the clinical implementation of precision medicine in Europe

    Age-dependency of thrombin generation

    No full text

    Heparins:A Shift of Paradigm

    No full text
    Heparins inhibit the thrombin forming capacity of plasma, i. e., the endogenous thrombin potential (ETP), by their anti-thrombin (aIIa) activity, the anti-factor Xa (aXa) activity is of minimal importance. This holds for both unfractionated heparin (UFH) and low molecular weight heparin (LMWH) at aXa/aIIa ratios <25. Clinical experience and epidemiological evidence show a direct relationship between the ETP and the risk of thrombosis and bleeding. Consequently, the therapeutic potency of a heparin is determined by its aIIa activity, i.e., the concentration of a domain in which 12 sugar flank the high affinity antithrombin-binding pentasaccharide (HA5) at one side. The response of individual plasmas to a fixed dose of any heparin is highly variable. This suggests that individualization of heparin dosage, on basis of the ETP, might reduce bleeding or re-thrombosis. There exist simple laboratory methods for both the ETP and the concentration of the active domain. These methods can be used both for unequivocally characterization of a heparin preparation and for controlling heparin therapy and allow arbitrary units relative to a standard to be abandoned. These tests are as robust as any hematological routine test but not yet routinely available, which severely encumbers progress in the field

    Thrombin generation: What have we learned?

    No full text
    Thrombin is a pivotal player in the coagulation system. In clotting blood a transient wave of thrombin appears after a lag time. Clotting occurs at the start of the wave. The amount of thrombin formed reflects the function of the hemostatic system much better than the clotting time does: The more thrombin the less bleeding but the more thrombosis, the less thrombin the more bleeding but the less thrombosis" has been shown to hold for congenital and acquired tendencies to venous thrombosis and bleeding and under all variants of antithrombotic treatment. The situation with arterial thrombosis is less clear. Calibrated automated thrombinography (CAT) allows quantitative assessment of the thrombin generation (TG) curve in platelet poor as well as in platelet rich plasma. Procedures to measure TG in whole blood and at the point of care are under development. TG measurement in platelet rich plasma underlines the close cooperation between platelets and the clotting system and challenges the traditional division between primary and secondary hemostases
    corecore