516 research outputs found

    Plasmonic Cloaking of Cylinders: Finite Length, Oblique Illumination and Cross-Polarization Coupling

    Full text link
    Metamaterial cloaking has been proposed and studied in recent years following several interesting approaches. One of them, the scattering-cancellation technique, or plasmonic cloaking, exploits the plasmonic effects of suitably designed thin homogeneous metamaterial covers to drastically suppress the scattering of moderately sized objects within specific frequency ranges of interest. Besides its inherent simplicity, this technique also holds the promise of isotropic response and weak polarization dependence. Its theory has been applied extensively to symmetrical geometries and canonical 3D shapes, but its application to elongated objects has not been explored with the same level of detail. We derive here closed-form theoretical formulas for infinite cylinders under arbitrary wave incidence, and validate their performance with full-wave numerical simulations, also considering the effects of finite lengths and truncation effects in cylindrical objects. In particular, we find that a single isotropic (idealized) cloaking layer may successfully suppress the dominant scattering coefficients of moderately thin elongated objects, even for finite lengths comparable with the incident wavelength, providing a weak dependence on the incidence angle. These results may pave the way for application of plasmonic cloaking in a variety of practical scenarios of interest.Comment: 17 pages, 11 figures, 2 table

    Experimental Verification of 3D Plasmonic Cloaking in Free-Space

    Full text link
    We report the experimental verification of metamaterial cloaking for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite-length dielectric cylinder. We verify that scattering suppression is obtained all around the object in the near- and far-field and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our near-field and far-field measurements confirm that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects with moderate transverse cross-section at microwave frequencies.Comment: 12 pages, 8 figures, published in NJ

    FDTD analysis of the tunneling and growing exponential in a pair of epsilon-negative and mu-negative slabs

    Full text link
    Pairing together material slabs with opposite signs for the real parts of their constitutive parameters has been shown to lead to interesting and unconventional properties that are not otherwise observable for single slabs. One such case was demonstrated analytically for the conjugate (i.e., complementary) pairing of infinite planar slabs of epsilon-negative (ENG) and mu-negative (MNG) media [A. Alu, and N. Engheta, IEEE Trans. Antennas Prop., 51, 2558 (2003)]. There it was shown that when these two slabs are juxtaposed and excited by an incident plane wave, resonance, complete tunneling, total transparency and reconstruction of evanescent waves may occur in the steady-state regime under a monochromatic excitation, even though each of the two slabs by itself is essentially opaque to the incoming radiation. This may lead to virtual imagers with sub-wavelength resolution and other anomalous phenomena overcoming the physical limit of diffraction. Here we explore how a transient sinusoidal signal that starts at t = 0 interacts with such an ENG-MNG pair of finite size using an FDTD technique. Multiple reflections and transmissions at each interface are shown to build up to the eventual steady state response of the pair, and during this process one can observe how the growing exponential phenomenon may actually occur inside this bilayer.Comment: 14 pages, 9 figures, submitted to Phys Rev

    Polarizabilities and Effective Parameters for Collections of Spherical Nano-Particles Formed by Pairs of Concentric Double-Negative (DNG), Single-Negative (SNG) and/or Double-Positive (DPS) Metamaterial Layers

    Get PDF
    Unusual scattering effects from tiny spherical particles may be obtained when concentric shells are designed by pairing together 'complementary' double-negative (DNG), single-negative (SNG), and/or standard double-positive (DPS) materials. By embedding these highly polarizable scatterers in a host medium one can achieve a bulk medium with interesting effective parameters. Some physical insights and justifications for the anomalous polarizability of these concentric spherical nano-particles and the effective parameters of the bulk composite medium are discussed.Comment: 33 pages, 9 figures; fixed typos in Eq. (8) and (9) and added copyright statemen

    Acoustic Supercoupling in a Zero-Compressibility Waveguide

    Full text link
    Funneling acoustic waves through largely mismatched channels is of fundamental importance to tailor and transmit sound for a variety of applications. In electromagnetics, zero-permittivity metamaterials have been used to enhance the coupling of energy in and out of ultranarrow channels, based on a phenomenon known as supercoupling. These metamaterial channels can support total transmission and complete phase uniformity, independent of the channel length, despite being geometrically mismatched to their input and output ports. In the field of acoustics, this phenomenon is challenging to achieve, since it requires zero-density metamaterials, typically realized with waveguides periodically loaded with membranes or resonators. Compared to electromagnetics, the additional challenge is due to the fact that conventional acoustic waveguides do not support a cut-off for the dominant mode of propagation, and therefore zero-index can be achieved only based on a collective resonance of the loading elements. Here we propose and experimentally realize acoustic supercoupling in a dual regime, using a compressibility-near-zero acoustic channel. Rather than engineering the channel with subwavelength inclusions, we operate at the cut-off of a higher-order acoustic mode, demonstrating the realization and efficient excitation of a zero-compressibility waveguide with effective soft boundaries. We experimentally verify strong transmission through a largely mismatched channel and uniform phase distribution, independent of the channel length. Our results open interesting pathways towards the realization of extreme acoustic parameters, and their implementation in relevant applications, such as ultrasound imaging, sonar technology, and sound transmission

    PT-Symmetric planar devices for field transformation and imaging

    Get PDF
    The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imagin

    Dynamic Homogenization of Acoustic Metamaterials with Coupled Field Response

    Get PDF
    AbstractAcoustic metamaterials (AMM) are heterogeneous materials with dynamic subwavelength structures that can generate useful effective responses of interest to ultrasonic imaging applications such as negative refraction and zero index. Traditional effective medium models fail to capture details of frequency dependent AMM response and can give non-causal properties. This work derives non-local expressions for effective properties for an infinite periodic lattice of heterogeneities in an isotropic fluid using conservation of mass and momentum and the equation of state. The resulting model correctly predicts a causal effective material response by considering coupling between the ensemble-averaged volume strain and momentum fields

    PT-Symmetric planar devices for field transformation and imaging

    Get PDF
    The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imagin
    corecore