1,837 research outputs found

    Non-universal equilibrium crystal shape results from sticky steps

    Full text link
    The anisotropic surface free energy, Andreev surface free energy, and equilibrium crystal shape (ECS) z=z(x,y) are calculated numerically using a transfer matrix approach with the density matrix renormalization group (DMRG) method. The adopted surface model is a restricted solid-on-solid (RSOS) model with "sticky" steps, i.e., steps with a point-contact type attraction between them (p-RSOS model). By analyzing the results, we obtain a first-order shape transition on the ECS profile around the (111) facet; and on the curved surface near the (001) facet edge, we obtain shape exponents having values different from those of the universal Gruber-Mullins-Pokrovsky-Talapov (GMPT) class. In order to elucidate the origin of the non-universal shape exponents, we calculate the slope dependence of the mean step height of "step droplets" (bound states of steps) using the Monte Carlo method, where p=(dz/dx, dz/dy)$, and represents the thermal averag |p| dependence of , we derive a |p|-expanded expression for the non-universal surface free energy f_{eff}(p), which contains quadratic terms with respect to |p|. The first-order shape transition and the non-universal shape exponents obtained by the DMRG calculations are reproduced thermodynamically from the non-universal surface free energy f_{eff}(p).Comment: 31 pages, 21 figure

    The upper triangular solutions to the three-state constant quantum Yang-Baxter equation

    Full text link
    In this article we present all nonsingular upper triangular solutions to the constant quantum Yang-Baxter equation Rj1j2k1k2Rk1j3l1k3Rk2k3l2l3=Rj2j3k2k3Rj1k3k1l3Rk1k2l1l2R_{j_1j_2}^{k_1k_2}R_{k_1j_3}^{l_1k_3}R_{k_2k_3}^{l_2l_3}= R_{j_2j_3}^{k_2k_3}R_{j_1k_3}^{k_1l_3}R_{k_1k_2}^{l_1l_2} in the three state case, i.e. all indices ranging from 1 to 3. The upper triangular ansatz implies 729 equations for 45 variables. Fortunately many of the equations turned out to be simple allowing us to start breaking the problem into smaller ones. In the end we had a total of 552 solutions, but many of them were either inherited from two-state solutions or subcases of others. The final list contains 35 nontrivial solutions, most of them new.Comment: 24 Pages in LaTe

    Vicinal Surface with Langmuir Adsorption: A Decorated Restricted Solid-on-solid Model

    Full text link
    We study the vicinal surface of the restricted solid-on-solid model coupled with the Langmuir adsorbates which we regard as two-dimensional lattice gas without lateral interaction. The effect of the vapor pressure of the adsorbates in the environmental phase is taken into consideration through the chemical potential. We calculate the surface free energy ff, the adsorption coverage Θ\Theta, the step tension γ\gamma, and the step stiffness γ~\tilde{\gamma} by the transfer matrix method combined with the density-matrix algorithm. Detailed step-density-dependence of ff and Θ\Theta is obtained. We draw the roughening transition curve in the plane of the temperature and the chemical potential of adsorbates. We find the multi-reentrant roughening transition accompanying the inverse roughening phenomena. We also find quasi-reentrant behavior in the step tension.Comment: 7 pages, 12 figures (png format), RevTeX 3.1, submitted to Phys. Rev.

    Vassiliev Invariants for Links from Chern-Simons Perturbation Theory

    Get PDF
    The general structure of the perturbative expansion of the vacuum expectation value of a product of Wilson-loop operators is analyzed in the context of Chern-Simons gauge theory. Wilson loops are opened into Wilson lines in order to unravel the algebraic structure encoded in the group factors of the perturbative series expansion. In the process a factorization theorem is proved for Wilson lines. Wilson lines are then closed back into Wilson loops and new link invariants of finite type are defined. Integral expressions for these invariants are presented for the first three primitive ones of lower degree in the case of two-component links. In addition, explicit numerical results are obtained for all two-component links of no more than six crossings up to degree four.Comment: 44 pages, LaTex, epsf.sty, 15 figure

    Utilization of Mental Health Services

    Get PDF

    Fluctuations of an Atomic Ledge Bordering a Crystalline Facet

    Full text link
    When a high symmetry facet joins the rounded part of a crystal, the step line density vanishes as sqrt(r) with r denoting the distance from the facet edge. This means that the ledge bordering the facet has a lot of space to meander as caused by thermal activation. We investigate the statistical properties of the border ledge fluctuations. In the scaling regime they turn out to be non-Gaussian and related to the edge statistics of GUE multi-matrix models.Comment: Version with major revisions -- RevTeX, 4 pages, 2 figure

    Colored Vertex Models, Colored IRF Models and Invariants of Trivalent Colored Graphs

    Full text link
    We present formulas for the Clebsch-Gordan coefficients and the Racah coefficients for the root of unity representations (NN-dimensional representations with q2N=1q^{2N}=1) of Uq(sl(2))U_q(sl(2)). We discuss colored vertex models and colored IRF (Interaction Round a Face) models from the color representations of Uq(sl(2))U_q(sl(2)). We construct invariants of trivalent colored oriented framed graphs from color representations of Uq(sl(2))U_q(sl(2)).Comment: 39 pages, January 199

    Multi-Colour Braid-Monoid Algebras

    Full text link
    We define multi-colour generalizations of braid-monoid algebras and present explicit matrix representations which are related to two-dimensional exactly solvable lattice models of statistical mechanics. In particular, we show that the two-colour braid-monoid algebra describes the Yang-Baxter algebra of the critical dilute A-D-E models which were recently introduced by Warnaar, Nienhuis, and Seaton as well as by Roche. These and other solvable models related to dense and dilute loop models are discussed in detail and it is shown that the solvability is a direct consequence of the algebraic structure. It is conjectured that the Yang-Baxterization of general multi-colour braid-monoid algebras will lead to the construction of further solvable lattice models.Comment: 32 page

    Interacting Boson Theory of the Magnetization Process of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain

    Get PDF
    The low temperature magnetization process of the ferromagnetic-antiferromagnetic Heisenberg chain is studied using the interacting boson approximation. In the low field regime and near the saturation field, the spin wave excitations are approximated by the δ\delta function boson gas for which the Bethe ansatz solution is available. The finite temperature properties are calculated by solving the integral equation numerically. The comparison is made with Monte Carlo calculation and the limit of the applicability of the present approximation is discussed.Comment: 4 pages, 7 figure
    corecore