318 research outputs found
Magnetic properties of triethylene glycol coated CoFe2O4 and Mn0.2Co0.8Fe2O4 NP's synthesized by polyol method
AbstractIn this study, we reported on the structural and magnetic properties of TEG-CoFe2O4 and TEG-Mn0.2Co0.8Fe2O4 nanocomposites produced by the glycothermal reaction (polyol). X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibration sample magnetometer (VSM) analysis have been carried out in order to understand the effect of Mn2+ into CoFe2O4 and it was observed that the addition of Mn2+ tends to reduce the crystallite size, increase the ao (cell parameter) and increase the TB. The presence of adsorbed polyol entities on the surface of the CoFe2O4 and Mn0.2Co0.8Fe2O4 NP's was also proven by TG measurements. FT-IR analysis suggested the presence of adsorbed TEG molecules on the surface of CoFe2O4 and Mn0.2Co0.8Fe2O4 NP's
Optimizing fire station locations for the Istanbul metropolitan municipality
Copyright @ 2013 INFORMSThe Istanbul Metropolitan Municipality (IMM) seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station’s receipt of a service request. In this paper, we discuss our development of a mathematical model to aid IMM in determining these locations by using data retrieved from its fire incident records. We use a geographic information system to implement the model on Istanbul’s road network, and solve two location models—set-covering and maximal-covering—as what-if scenarios. We discuss 10 scenarios, including the situation that existed when we initiated the project and the scenario that IMM implemented. The scenario implemented increases the city’s fire station coverage from 58.6 percent to 85.9 percent, based on a five-minute response time, with an implementation plan that spans three years
EPR study of Mn-implanted single crystal plates of TiO2 rutile
Single crystals of Mn-implanted TiO2 rutile have been investigated by electron paramagnetic resonance (EPR) technique at room temperature. We have observed an EPR signal on Mn4+ ions (S=frac(3, 2)) in the manganese-implanted single crystal TiO2 plates. Besides, weaker EPR signals due to Fe3+(S=frac(5, 2), L=0) and Cr3+(S=frac(3, 2)) ions have also been observed. Characteristic six-line splitting of the manganese EPR lines due to hyper-fine interaction with 55Mn nuclei (spin I=frac(5, 2)) has also been observed. Analysis of the EPR spectra shows that the manganese, iron and chromium ions substitute for Ti4+ ions in the TiO2 rutile host. Two structurally equivalent groups of the centers have been observed in the EPR spectra in correspondence with two octahedral positions of the Ti ions in the rutile structure. Spin Hamiltonian parameters for the crystal field of orthorhombic symmetry on the Mn4+, Fe3+ and Cr3+ centers have been obtained as result of computer modelling. © 2009 Elsevier B.V. All rights reserved
Strain-induced magnetic anisotropies in epitaxial CrO2 thin films probed by FMR technique
Epitaxial CrO2 thin films were grown onto TiO2 (1 0 0) single-crystalline substrates by chemical vapour deposition (CVD) process with use of the solid precursor CrO3. The CrO2 films with thickness of 27 and 65 nm were deposited onto TiO2 substrates pre-etched in the diluted HF. The magnetic properties of the epitaxial chromium-dioxide films have been probed by the ferromagnetic resonance (FMR) technique. Analysis of the FMR spectra shows that the magnetic behaviour of the CrO2 films results from a competition between magnetocrystalline and strain anisotropies. The thin films are heavily strained due to lattice mismatch of CrO2 epitaxial film with the TiO2 single-crystalline substrate. For the thinnest film (27 nm) the stress anisotropy dominates, and the magnetic easy axis switches from the c direction to the b direction of the rutile structure. Unusual angular dependence of the resonance signal and multiple FMR modes are observed for the film with the thickness of 65 nm, where a partial strain relaxation results in appearance of two magnetic phases with mutually perpendicular easy axes along the c and b directions. © 2005 Elsevier B.V. All rights reserved
EPR study of Mn-implanted single crystal TiO2
Single crystals of manganese-implanted TiO2 rutile have been investigated by electron paramagnetic resonance (EPR) technique at room temperature. ESR spectra have been interpreted to correspond to the transitions among the spin multiplet (S=3/2) of the paramagnetic Mn4+ ion. Characteristic six-line hyper-fine splitting of the ESR spectra resulting from the spin I=5/2 of the Mn55 nucleus has been observed. Analysis of EPR spectra shows that manganese in TiO2 rutile host substitutes for Ti4+ ions. Two equivalent Mn4+ centers have been observed in the EPR spectra in correspondence with two equivalent octahedral positions of Ti ions in the rutile structure. Parameters of the crystal field of orthorhombic symmetry on the Mn4+ centers have been obtained as result of computer modelling. © 2009 IOP Publishing Ltd
FMR studies of CrO2 epitaxial thin films
Epitaxial (100) thin films of CrO2 of various thickness were fabricated by chemical vapor deposition (CVD) at atmospheric oxygen pressure onto (100) TiO2 single-crystal substrates. Ferromagnetic resonance (FMR) measurements were performed at the X-band (9.5 GHz) at room temperature. The angular dependencies of the FMR spectra in both "in-plane" and "out-of-plane" geometries were measured. The directions of easy and hard axes of magnetization were determined from the in-plane measurements, when the DC magnetic field was rotated in the film plane. It was established that, at room temperature, the easy axis of magnetization is parallel to the c-axis of the CrO2 rutile structure. Splitting of the FMR signal into surface and bulk modes was observed due to surface pinning of magnetization at interfaces of the CrO2 films. The magnetoelastic anisotropy was observed to be enhanced with decreasing film thickness. The values of the room temperature effective magnetization and parameters of the anisotropy field were obtained from analysis of the FMR data. © 2003 Elsevier B.V. All rights reserved
ESR study of Co-doped TiO2 thin films
Co:TiO2 thin films prepared by reactive co-sputtering deposition were studied by electron spin resonance (ESR) technique. Magnetization measurements showed hysteretic behavior with the coercive field between 55 and 65 Oe and the saturation magnetization at room temperature ranging from 7 (2.2% Co) to 28 emu/cm3 (8.5% Co). ESR measurements at X-band (9.5 GHz) revealed an anomaly in the temperature behavior of the absorption intensity near the temperature at 60 K. This behavior is attributed to an unconventional spin-glass-like behavior, which results from competition of long-range dipole-dipole interaction and anisotropy fields in ferromagnetic Co nanoparticles. © 2002 Elsevier Science B.V. All rights reserved
High curie-temperature ferromagnetism in cobalt-implanted single-crystalline rutile
The ion implantation technique has been used to fabricate a Co-rich layer in rutile: single-crystalline TiO2 substrates were heavily irradiated by Co+ ions with energy of 40 keV. The magnetic properties of as-prepared and post-annealed samples were studied by both inductive and Faraday magnetometry as well as ferromagnetic resonance (FMR). A ferromagnetic Curie temperature as high as 700 K was measured in our samples. The analysis of the magnetic hysteresis loop, the temperature dependence of the saturation magnetization, and strong out-of-plane anisotropy of the FMR spectra allow us to suppose that the origin of the macroscopic high-temperature ferromagnetism is the exchange interaction mediated by oxygen vacancies
In situ laccase-assisted overdyeing of denim using flavonoids
A laccase-mediated system for denim overdyeing using phenolic compounds was developed. Laccase from ascomycete Myceliophthora thermophila was able to oxidize phenolic compounds such as catechol and catechin and mediate their attachment to denim surfaces. Laccase-generated polymers gave rise to new coloration states from dark brown to green–yellow and replaced dyes in the overdyeing process. Process parameters, such as enzyme dosage, incubation time and presence of mediator, were studied by considering a compromise between the highest overdyeing level and lower energy/products consumption (2 U/mL laccase; 4 h incubation in the absence of mediator). Enzyme-generated polymers were followed by UV/Vis spectrophotometry and their level of attachment to denim surfaces was evaluated by means of spectral values quantification [k/s, Kubelka–Munk relationship (k=absorption coefficient, s=scattering coefficient)]. Overdyeing of denim with phenolics, such as catechol or catechin, was successfully achieved with acceptable levels in terms of durability.S.Y.K. would like to acknowledge the BIORENEW European Project - Sixth Framework European Program. C.S. would like to acknowledge the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) for funding under the scholarship SFRH/BPD/46515/2008
The magnetic anisotropy of thin epitaxial CrO2 films studied by ferromagnetic resonance
The magnetic anisotropy of thin epitaxial films of chromium dioxide (CrO2) has been studied as a function of the film thickness by the ferromagnetic resonance (FMR) technique. CrO2 films with various thicknesses in the range from 27 to 535 nm have been grown on (100)-oriented TiO2 substrates by chemical vapor deposition using CrO3 as a solid precursor. In a series of CrO2 films grown on the substrates cleaned by etching in a hydrofluoric acid solution, the FMR signal exhibits anisotropy and is strongly dependent on the film thickness. The magnetic properties of CrO2 films are determined by a competition between the magnetocrystalline and magnetoelastic anisotropy energies, the latter being related to elastic tensile stresses caused by the lattice mismatch between the film and the substrate. In the films of minimum thickness (27 nm), this strain-induced anisotropy is predominant and the easy magnetization axis switches from the [001] crystallographic direction (characteristic of the bulk magnet) to the [010] direction. © 2005 Pleiades Publishing, Inc
- …