16 research outputs found

    Size-Aware Hypergraph Motifs

    Full text link
    Complex systems frequently exhibit multi-way, rather than pairwise, interactions. These group interactions cannot be faithfully modeled as collections of pairwise interactions using graphs, and instead require hypergraphs. However, methods that analyze hypergraphs directly, rather than via lossy graph reductions, remain limited. Hypergraph motif mining holds promise in this regard, as motif patterns serve as building blocks for larger group interactions which are inexpressible by graphs. Recent work has focused on categorizing and counting hypergraph motifs based on the existence of nodes in hyperedge intersection regions. Here, we argue that the relative sizes of hyperedge intersections within motifs contain varied and valuable information. We propose a suite of efficient algorithms for finding triplets of hyperedges based on optimizing the sizes of these intersection patterns. This formulation uncovers interesting local patterns of interaction, finding hyperedge triplets that either (1) are the least correlated with each other, (2) have the highest pairwise but not groupwise correlation, or (3) are the most correlated with each other. We formalize this as a combinatorial optimization problem and design efficient algorithms based on filtering hyperedges. Our experimental evaluation shows that the resulting hyperedge triplets yield insightful information on real-world hypergraphs. Our approach is also orders of magnitude faster than a naive baseline implementation

    HyperMagNet: A Magnetic Laplacian based Hypergraph Neural Network

    Full text link
    In data science, hypergraphs are natural models for data exhibiting multi-way relations, whereas graphs only capture pairwise. Nonetheless, many proposed hypergraph neural networks effectively reduce hypergraphs to undirected graphs via symmetrized matrix representations, potentially losing important information. We propose an alternative approach to hypergraph neural networks in which the hypergraph is represented as a non-reversible Markov chain. We use this Markov chain to construct a complex Hermitian Laplacian matrix - the magnetic Laplacian - which serves as the input to our proposed hypergraph neural network. We study HyperMagNet for the task of node classification, and demonstrate its effectiveness over graph-reduction based hypergraph neural networks.Comment: 9 pages, 1 figur

    Fast Parallel Tensor Times Same Vector for Hypergraphs

    Full text link
    Hypergraphs are a popular paradigm to represent complex real-world networks exhibiting multi-way relationships of varying sizes. Mining centrality in hypergraphs via symmetric adjacency tensors has only recently become computationally feasible for large and complex datasets. To enable scalable computation of these and related hypergraph analytics, here we focus on the Sparse Symmetric Tensor Times Same Vector (S3^3TTVc) operation. We introduce the Compound Compressed Sparse Symmetric (CCSS) format, an extension of the compact CSS format for hypergraphs of varying hyperedge sizes and present a shared-memory parallel algorithm to compute S3^3TTVc. We experimentally show S3^3TTVc computation using the CCSS format achieves better performance than the naive baseline, and is subsequently more performant for hypergraph HH-eigenvector centrality
    corecore