8 research outputs found

    Effects of Environmental Factors on Naturalistic Driving in Obstructive Sleep Apnea

    Get PDF
    Reduced visibility and other environmental factors can impair driver ability to respond to roadway hazards. We examined the effects of reduced visibility on naturalistic driving in 66 drivers, including 45 at-risk drivers with obstructive sleep apnea (OSA) and 21 controls. We analyzed three months of electronic data using “black box” recorder technology and assessed the extent to which driver speed, longitudinal acceleration, and lateral acceleration metrics depend on ambient visibility from web-based environmental data archives. We calculated summary driving metrics within 10-second intervals, and reduced these to within-subject means and tested for associations of interest. OSA drivers did not differ from controls with respect to electronic measures or visibility conditions in which they drove. On average, drivers drove slower when visibility was reduced. After controlling for speed, variations in lateral and longitudinal acceleration were positively associated with high-visibility conditions. These findings suggest that drivers exert greater vehicular control when visibility is limited, and that this association is not just due to slower speeds. Weaker relationships between visibility and driving measures in OSA suggest reduced adaptive strategies. Our methods provide a framework for analyzing the effects of other environmental factors on driving, and we provide an additional example using wind speed

    Feedback from Naturalistic Driving Improves Treatment Compliance in Drivers with Obstructive Sleep Apnea

    Get PDF
    As part of a study in drivers with obstructive sleep apnea (OSA), we conducted a randomized clinical trial to assess whether individualized feedback can increase compliance with continuous positive airway pressure (CPAP) therapy. After completing 3.5 months of naturalistic driving monitoring, OSA drivers were randomized either to receive an intervention, which was feedback regarding their own naturalistic driving record and CPAP compliance, or to receive no such intervention. In the week immediately after the intervention date, drivers receiving feedback (n=30) improved their CPAP usage by an average of 35.8 minutes per night (p=0.008; 95% CI=9.6, 62.0) to a mean level of 296 minutes. By contrast, CPAP usage in the non-feedback group (n=36) decreased an average of 27.5 minutes per night (p=0.022; 95% CI=4.0, 51.0) to a mean level of 236 minutes. The mean group-specific changes were higher (better) in the feedback group than in the non-feedback group during the first, second, and third weeks of follow-up (p0.25 in all cases). Our study suggests that CPAP compliance can be increased using individualized feedback, but that follow-up feedback sessions or reminders may be necessary for sustained improvement

    Linking GPS Data to GIS Databases in Naturalistic Studies: Examples from Drivers with Obstructive Sleep Apnea

    Get PDF
    In naturalistic studies, it is vital to give appropriate context when analyzing driving behaviors. Such contextualization can help address the hypotheses that explore a) how drivers perform within specific types of environment (e.g., road types, speed limits, etc.), and b) how often drivers are exposed to such specific environments. In order to perform this contextualization in an automated fashion, we are using Global Positioning System (GPS) data obtained at 1 Hz and merging this with Geographic Information Systems (GIS) databases maintained by the Iowa Department of Transportation (DOT). In this paper, we demonstrate our methods of doing this based on data from 43 drivers with obstructive sleep apnea (OSA). We also use maps from GIS software to illustrate how information can be displayed at the individual drive or day level, and we provide examples of some of the challenges that still need to be addressed

    “Choking Under Pressure” in Older Drivers

    Get PDF
    Aging can impair executive control and emotion regulation, affecting driver decision-making and behavior, especially under stress. We used an interactive driving simulator to investigate ability to make safe left-turns across oncoming traffic under pressure in 13 older (\u3e 65 years old) and 16 middle-aged (35-56 years old) drivers. Drivers made left-turns at an uncontrolled intersection with moderately heavy oncoming traffic. Gaps between oncoming vehicles varied and increased gradually from 2 s to 10 s. Drivers made two left-turns with a vehicle honking aggressively behind (pressure condition), and two left-turns without the honking vehicle (control condition). Results showed that middle-aged drivers made more cautious turning decisions under pressure (by waiting for larger and safer gaps, p \u3c .001), but older drivers did not. Further, older driver turning paths deviated under pressure compared to the control condition (p \u3c .05), but the middle-aged group did not. Moreover, across all subjects, better executive function was significantly correlated with larger increases of accepted gap size from control to honking (p \u3c .01). The findings suggest that older drivers are more sensitive to traffic challenges from environmental pressure and that neural models of older driver performance and safety must factor in age-related changes in executive control and emotion processing

    Neuropsychological Predictors of Safety in Urban Left-Turn Scenarios

    Get PDF
    Left turns at urban intersections can be dangerous, especially when views are obstructed or pedestrians are present. Impairments in driver vision, motor, and cognition functions may further increase left-turn risk. We examined this problem in a simulated environment that included left-turn scenarios to study the driving behaviors of 28 drivers, ages 37 to 88 years, six of whom had “Useful Field of View” (UFOV) impairments. Subjects also completed a battery of neuropsychological tests. The simulated drive included an urban section with six left turns in three types of scenarios: 1) a semi truck blocking the view of oncoming traffic, 2) a lead vehicle obstruction, and 3) a pedestrian crossing ahead of the turning driver. Results showed a mean (SD) of 1.46 (1.60) collisions per driver (range 0 to 7), 83% of which occurred at intersections with semi trucks. Far visual acuity, contrast sensitivity, UFOV, Mini Mental State Examination, TrailMaking Test Part B, the Wisconsin Card Sort task, and age were all associated with the total number of collisions (Pearson correlation magnitudes between 0.37 to 0.77; p-values\u3c0.05). Spearman correlations were less significant. Findings indicate that visual obstruction by on oncoming semi-truck is a particularly dangerous left-turn situation

    Using Feedback from Naturalistic Driving to Improve Treatment Adherence in Drivers with Obstructive Sleep Apnea

    Get PDF
    We are studying the effects of individualized feedback upon adherence with therapy (CPAP) in ongoing research aimed at improving driving safety in at-risk individuals with obstructive sleep apnea (OSA). The feedback includes specific samples of the individual’s own naturalistic driving record, both alert and drowsy, and record of CPAP adherence. We report on this methodology, provide data examples of CPAP usage, and show preliminary data on the results in the first eleven drivers who received this intervention
    corecore