2 research outputs found

    Solid State Switching Control Methods: A Bibliometric Analysis for Future Directions

    No full text
    Recently, the development and controls of solid-state switching have gained significant popularity over the years especially in academic research. The development of control strategies in solid state switching applications to ensure fast switching in a protected distribution system has fueled a great deal of investigation and further developments. Therefore, a critical review and analysis in the field of solid-state switching for distribution systems are provided in this article. The Scopus database is used to compile a list of the most cited published papers in the field of solid-state switching control methods based on the identified criteria. The study explores 120 of the most cited articles emphasizing six keywords such as a solid-state breaker, solid-state transfer switch, static transfer switch, automatic transfer switch, automatic protection switches, and solid-state protection switch. The analysis was conducted using the Scopus database in the fourth week of January 2021. The 120 articles were collected from 24 different journals and 27 different countries. It is reported that 78% of the published papers outline the methodology based on control and test systems whereas 22% of articles are based on review surveys. From that, 73% of articles concentrate on the protection strategy in the system. The main objective of the article is to classify and define the highly cited published articles in the field of solid-state switching control methods as well as to provide direction for future research on fast switching in the distribution system. The analysis also highlights various factors, issues, challenges, and difficulties to identify the existing limitations and research gaps. This review will serve to strengthen the development concepts of solid-state switching control methods towards achieving improved operational performance, energy-saving, economic prosperity, and enhanced power quality. The authors believe that this bibliometric evaluation will allow academic researchers to identify opportunities for growth in the solid-state switching industry

    Recent Advances in Yttrium Iron Garnet Films: Methodologies, Characterization, Properties, Applications, and Bibliometric Analysis for Future Research Directions

    No full text
    Due to recent advances in communication systems, dielectric and magnetic ceramics (ferrites) are attractive for use in devices. Spinel-type ferrites were the first material utilized in microwave devices; however, yttrium iron garnet (YIG) has low dielectric losses and is exploited in many applications. Owing to its high Faraday rotation, YIG films are utilized in magneto-optical applications. This study intends to examine the research trends and scientific research progress on highly cited papers discussing YIG films published between 2012 and 2022 using a bibliometric method. A comprehensive review of 100 scientific papers about YIG was performed from the Scopus database. The assessment of these highly cited papers was highlighted based on the following factors: publication trends and performance, limitations/research gaps, keywords, sub-fields, methodology journal evaluations, document type evaluation, issues, difficulties, solutions, and applications as well as guiding future YIG research. The majority of publications (99%) comprise experimental analysis, whereas 1% provide a based state-of-the-art overview. Ninety-one percent of articles focused on magnetization characterization. This bibliometric survey indicates that YIG film research is an expanding and developing field. The results of the data analysis can be utilized to improve the researchers’ understanding of YIG research and to encourage additional study in this area
    corecore