24 research outputs found

    Temperature sensitivity of Cu K-alpha imaging efficiency using a spherical Bragg reflecting crystal

    No full text
    The interaction of a 75 J 10 ps, high intensity laser beam with low-mass, solid Cu targets is investigated. Two instruments were fielded as diagnostics of Cu K -shell emission from the targets: a single photon counting spectrometer provided the absolute Kα yield [C. Stoeckl, Rev. Sci. Instrum. 75, 3705 (2004)] and a spherically bent Bragg crystal recorded 2D monochromatic images with a spatial resolution of 10 μm [J. A. Koch, Rev. Sci. Instrum. 74, 2130 (2003)]. Due to the shifting and broadening of the Kα spectral lines with increasing temperature, there is a temperature dependence of the crystal collection efficiency. This affects measurements of the spatial pattern of electron transport, and it provides a temperature diagnostic when cross calibrated against the single photon counting spectrometer. The experimental data showing changing collection efficiency are presented. The results are discussed in light of modeling of the temperature-dependent spectrum of Cu K -shell emission. © 2007 American Institute of Physics

    Studies on the transport of high intensity laser-generated hot electrons in cone coupled wire targets

    No full text
    Experimental results showing hot electron penetration into Cu wires using Kα fluorescence imaging are presented. A 500 J, 1 ps laser was focused at f/3 into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. Comparison of the axially diminishing absolute intensity of Cu Kα with modeling shows that the penetration of the electrons is consistent with one dimensional Ohmic potential limited transport. The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. Further, we find the hot electron temperature within the wire to be about 750 keV. The relevance of these data to cone coupled fast ignition is discussed. © 2009 American Institute of Physics

    Transport of energy by ultraintense laser-generated electrons in nail-wire targets

    No full text
    Nail-wire targets (20 μm diameter copper wires with 80 μm hemispherical head) were used to investigate energy transport by relativistic fast electrons generated in intense laser-plasma interactions. The targets were irradiated using the 300 J, 1 ps, and 2 × 1020 W · cm-2 Vulcan laser at the Rutherford Appleton Laboratory. A spherically bent crystal imager, a highly ordered pyrolytic graphite spectrometer, and single photon counting charge-coupled device gave absolute Cu Kα measurements. Results show a concentration of energy deposition in the head and an approximately exponential fall-off along the wire with about 60 μm 1/e decay length due to resistive inhibition. The coupling efficiency to the wire was 3.3 ± 1.7% with an average hot electron temperature of 620 ± 125 keV. Extreme ultraviolet images (68 and 256 eV) indicate additional heating of a thin surface layer of the wire. Modeling using the hybrid E-PLAS code has been compared with the experimental data, showing evidence of resistive heating, magnetic trapping, and surface transport. © 2009 American Institute of Physics

    Impact of extended preplasma on energy coupling in kilojoule energy relativistic laser interaction with cone wire targets relevant to fast ignition

    No full text
    Cone-guided fast ignition laser fusion depends critically on details of the interaction of an intense laser pulse with the inside tip of a cone. Generation of relativistic electrons in the laser plasma interaction (LPI) with a gold cone and their subsequent transport into a copper wire have been studied using a kJ-class intense laser pulse, OMEGA EP (850 J, 10 ps). Weobserved that the laser-pulse-energy-normalized copper K signal from the Cu wire attached to the Au cone is significantly reduced (by a factor of 5) as compared to that from identical targets using the Titan laser (150 J, 0.7 ps) with 60 × less energy in the prepulse. We conclude that the decreased coupling is due to increased prepulse energy rather than 10 ps pulse duration, for which this effect has not been previously explored. The collisional particle-in-cell code PICLS demonstrates that the preformed plasma has a significant impact on generation of electrons and their transport. In particular, a longer scale length preplasma significantly reduces the energy coupling from the intense laser to the wire due to the larger offset distance between the relativistic critical density surface and the cone tip as well as a wider divergence of source electrons. We also observed that laser-driven plasma ionization increase in the LPI region can potentially alter the electron density profile during the laser interaction, forcing the electron source to be moved farther away from the cone tip which contributes to the reduction of energy coupling. © IOP Publishing and Deutsche Physikalische Gesellschaft

    A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies.

    No full text
    A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the approximately 1.5 to 2 keV range (6.2-8.2 A wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4x10(20) W/cm(2). The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of approximately 10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He(alpha) and Ly(alpha) resonance lines were approximately 1.8 and approximately 1.0 mJ/eV sr (approximately 0.4 and 0.25 J/A sr), respectively, for 220 J, 10 ps laser irradiation
    corecore