827 research outputs found

    Fast electrochemical doping due to front instability in organic semiconductors

    Full text link
    The electrochemical doping transformation in organic semiconductor devices is studied in application to light-emitting cells. It is shown that the device performance can be significantly improved by utilizing new fundamental properties of the doping process. We obtain an instability, which distorts the doping fronts and increases the doping rate considerably. We explain the physical mechanism of the instability, develop theory, provide experimental evidence, and perform numerical simulations. We further show how improved device design can amplify the instability thus leading to a much faster doping process and device kinetics.Comment: 4 pages, 4 figure

    The pharmacokinetics of antibiotics in cystic fibrosis

    Get PDF
    Introduction Dosing of antibiotics in people with cystic fibrosis (CF) is challenging, due to altered pharmacokinetics, difficulty of lung tissue penetration, and increasing presence of antimicrobial resistance. Areas covered The purpose of this work is to critically review original data as well as previous reviews and guidelines on pharmacokinetics of systemic and inhaled antibiotics in CF, with the aim to propose strategies for optimization of antibacterial therapy in both children and adults with CF. Expert opinion For systemic antibiotics, absorption is comparable in CF patients and non-CF controls. The volume of distribution (Vd) of most antibiotics is similar between people with CF with normal body composition and healthy individuals. However, there are a few exceptions, like cefotiam and tobramycin. Many antibiotic class-dependent changes in drug metabolism and excretion are reported, with an increased total body clearance for ss-lactam antibiotics, aminoglycosides, fluoroquinolones, and trimethoprim. We, therefore, recommend following class-specific guidelines for CF, mostly resulting in higher dosages per kg bodyweight in CF compared to non-CF controls. Higher local antibiotic concentrations in the airways can be obtained by inhalation therapy, with which eradication of bacteria may be achieved while minimizing systemic exposure and risk of toxicity

    Quasi-steady stages in the process of premixed flame acceleration in narrow channels

    Get PDF
    The present paper addresses the phenomenon of spontaneous acceleration of a pre-mixed flame front propagating in micro-channels, with subsequent deflagration-to-detonation transition. It has recently been shown experimentally [M. Wu, M. Burke, S. Son, and R. Yetter, Proc. Combust. Inst. 31, 2429 (2007)], computationally [D. Valiev, V. Bychkov, V. Akkerman, and L.-E. Eriksson, Phys. Rev. E 80, 036317 (2009)], and analytically [V. Bychkov, V. Akkerman, D. Valiev, and C. K. Law, Phys. Rev. E 81, 026309 (2010)] that the flame acceleration undergoes different stages, from an initial exponential regime to quasi-steady fast deflagration with saturated velocity. The present work focuses on the final saturation stages in the process of flame acceleration, when the flame propagates with supersonic velocity with respect to the channel walls. It is shown that an intermediate stage may occur during acceleration with quasi-steady velocity, noticeably below the Chapman-Jouguet deflagration speed. The intermediate stage is followed by additional flame acceleration and subsequent saturation to the Chapman-Jouguet deflagration regime. We elucidate the intermediate stage by the joint effect of gas pre-compression ahead of the flame front and the hydraulic resistance. The additional acceleration is related to viscous heating at the channel walls, being of key importance at the final stages. The possibility of explosion triggering is also demonstrated

    Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    Get PDF
    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations

    The long-term safety of chronic azithromycin use in adult patients with cystic fibrosis, evaluating biomarkers for renal function, hepatic function and electrical properties of the heart

    Get PDF
    Background: Azithromycin maintenance therapy is widely used in cystic fibrosis (CF), but little is known about its long-term safety. We investigated whether chronic azithromycin use is safe regarding renal function, hepatic cell toxicity and QTc-interval prolongation. Methods: Adult CF patients (72 patients using azithromycin for a cumulative period of 364.8 years and 19 controls, 108.8 years) from two CF-centers in the Netherlands with azithromycin (non)-use for at least three uninterrupted years were studied retrospectively. Results: There was no difference in mean decline of estimated glomerular filtration rate (eGFR), nor in occurrence of eGFR-events. No drug-induced liver injury could be attributed to azithromycin. Of the 39 azithromycin users of whom an ECG was available, 4/39 (10.3%) had borderline and 4/39 (10.3%) prolonged QTc-intervals, with 7/8 patients using other QTc-prolonging medication. Of the control patients 1/6 (16.7%) had a borderline QTc-interval, without using other QTc-prolonging medication. No cardiac arrhythmias were observed. Conclusion: We observed no renal or hepatic toxicity, nor cardiac arrythmias during azithromycin use in CF patients for a mean study duration of more than 5 years. One should be aware of possible QTc-interval prolongation, in particular in patients using other QTc-interval prolonging medication

    Estimations of electron-positron pair production at high-intensity laser interaction with high-Z targets

    Get PDF
    Electron-positron pairs' generation occuring in the interaction of 101810^{18}-102010^{20}~W/cm2^2 laser radiation with high-Z targets are examined. Computational results are presented for the pair production and the positron yield from the target with allowance for the contribution of pair production processes due to electrons and bremsstrahlung photons. Monte-Carlo simulations using the PRIZMA code confirm the estimates obtained. The possible positron yield from high-Z targets irradiated by picosecond lasers of power 10210^2-10310^3~TW is estimated to be 10910^9-101110^{11}

    Interface dynamics of a two-component Bose-Einstein condensate driven by an external force

    Full text link
    The dynamics of an interface in a two-component Bose-Einstein condensate driven by a spatially uniform time-dependent force is studied. Starting from the Gross-Pitaevskii Lagrangian, the dispersion relation for linear waves and instabilities at the interface is derived by means of a variational approach. A number of diverse dynamical effects for different types of the driving force is demonstrated, which includes the Rayleigh-Taylor instability for a constant force, the Richtmyer-Meshkov instability for a pulse force, dynamic stabilization of the Rayleigh-Taylor instability and onset of the parametric instability for an oscillating force. Gaussian Markovian and non-Markovian stochastic forces are also considered. It is found that the Markovian stochastic force does not produce any average effect on the dynamics of the interface, while the non-Markovian force leads to exponential perturbation growth.Comment: 13 pages, 12 figure

    Cluster-based density-functional approach to quantum transport through molecular and atomic contacts

    Get PDF
    We present a cluster-based density-functional approach to model charge transport through molecular and atomic contacts. The electronic structure of the contacts is determined in the framework of density functional theory, and the parameters needed to describe transport are extracted from finite clusters. A similar procedure, restricted to nearest-neighbor interactions in the electrodes, has been presented by Damle et al. [Chem. Phys. 281, 171 (2002)]. Here, we show how to systematically improve the description of the electrodes by extracting bulk parameters from sufficiently large metal clusters. In this way we avoid problems arising from the use of nonorthogonal basis functions. For demonstration we apply our method to electron transport through Au contacts with various atomic-chain configurations and to a single-atom contact of Al.Comment: 18 pages, 13 figure
    • …
    corecore