44 research outputs found

    Changing Pattern of Deiminated Proteins in Developing Human Epidermis

    Get PDF
    Peptidylarginine deiminases are widely distributed, calcium-ion-dependent enzymes that convert arginine residues of proteins into citrulline residues. This reaction, deimination, is thought to be an important event during the final stage of epidermal differentiation, possibly associated with integration and disintegration of keratin filaments. To elucidate the possible roles of protein deimination during human epidermal development we investigated localization of deiminated proteins using anti-citrulline peptide antibody, which preferentially recognizes citrulline residues in the V subdomains of keratin 1, and anti-chemically modified citrulline antibody, which enables detection of citrulline residues independent of amino acid sequences. Anti-chemically modified citrulline antibody, but not anti-citrulline peptide antibody stained the periderm in two-layered epidermis of 49 d and 57 d estimated gestational age. In the stratified epidermis of 88 d, 96 d, and 108 d estimated gestational age fetal skin, anti-citrulline peptide antibody and anti-chemically modified citrulline antibody staining was seen in the periderm and intermediate cell layers. After periderm cells regressed and keratinization began in the interfollicular epidermis, anti-citrulline peptide antibody and anti-chemically modified citrulline antibody were restricted to the cornified cell layers of the interfollicular epidermis, similar to the distribution patterns of that in adult epidermis. Postembedding immunoelectron microscopy showed anti-citrulline peptide antibody immunogold labeling over the cytoplasmic intermediate filament network in the periderm and the intermediate cell layers. These results demonstrate an orderly formation of deiminated proteins in different layers of embryonic epidermis and suggest important roles for peptidylarginine deiminases in human epidermal morphogenesis

    Decreased Deiminated Keratin K1 in Psoriatic Hyperproliferative Epidermis

    Get PDF
    Citrulline-containing proteins, mainly originating from keratin K1 and formed by enzymatic deimination of arginine residues, have been identified in the cornified layers of human epidermis. We analyzed the localization and nature of the deiminated proteins in psoriatic epidermis. Immunostaining based on chemical modification of citrulline residues showed that the normal and psoriatic uninvolved epidermis contained deiminated proteins diffusely in the cornified cell layer, whereas the involved epidermis had no detectable or markedly reduced levels of deiminated proteins. Immunolabeling with polyclonal antibodies against a synthetic citrulline-containing peptide corresponding to a deiminated sequence of mouse K1 also suggested markedly decreased deiminated K1 in psoriatic involved lesions. Keratin analyses indicated that deiminated K1 present in normal and psoriatic uninvolved epidermis was not detected in the psoriatic involved epidermis. Double staining with a monoclonal antibody, 34βB4, and the polyclonal antibodies demonstrated that epidermis with low suprabasal keratin expression was negative for deiminated K1. In contrast, intralesional acrosyringia showing decreased suprabasal keratin immunoreactivity like that of the surrounding psoriatic epidermis showed strong deiminated K1 staining. This suggests that abnormal keratin deimination is restricted to the psoriatic hyperproliferative epidermis, without affecting sweat ductal epithelia

    Recombinant human interleukin 6 (B-cell stimulatory factor 2) is a potent inducer of differentiation of mouse myeloid leukemia cells (M1)

    Get PDF
    AbstractRecombinant human interleukin 6 (IL-6), a lymphokine involved in the final differentiation of activated B-cells into antibody-forming cells, greatly suppressed proliferation and induced differentiation of murine myeloid leukemia cells (M1) into mature macrophage-like cells. When M1 cells were treated with IL-6, their growth was completely arrested as early as on day 2, and they were induced to differentiate morphologically into macrophage-like cells. Differentiation-associated properties such as phagocytic activity, adherence to the dish surface, Fc and C3 receptors, were also induced within 24 h by IL-6, and they reached their respective maximal levels on day 2 or 3. The potency of IL-6 in suppressing proliferation and inducing differentiation was much greater than that of 1α,25-dihydroxyvitamin D3 one of the most potent inducers of M1 cells. The present report indicates that IL-6 is involved in the differentiation of not only B-cells but also myeloid leukemia cells

    ION-SENSITIVE FIELD-EFFECT TRANSISTORS WITH INORGANIC GATE OXIDE FOR PH SENSING

    Get PDF
    Ion-sensitive fieldeffect transistors (ISFET’s) have been fabricated by using silicon fiims on sapphire substrates (SOS). Using this structure Si02, Zr02, and TazO5 films are examined as hydrogenion- sensitive materials, and TazO5 fiim has been found to have the highest pH sensitivity (56 mV/pH) among them. The measured pH sensitivity of this SOS-ISFET’s is compared with the theoretical sensitivity based on the site-binding model of proton dimciation reaction on the metal oxide f i i and good agreement between them is obtained

    Assessment of early treatment response on MRI in multiple myeloma: Comparative study of whole-body diffusion-weighted and lumbar spinal MRI.

    No full text
    OBJECTIVES:To compare remission status at completion of chemotherapy for multiple myeloma (MM) with changes in total diffusion volume (tDV) calculated from whole-body diffusion-weighted imaging (WB-DWI) and fat fraction (FF) of lumbar bone marrow (BM) by modified Dixon Quant (mDixon Quant) soon after induction of chemotherapy, and to assess the predictive value of MRI. METHODS:Fifty patients (mean age, 66.9 ± 10.5 years) with symptomatic myeloma were examined before and after two cycles of chemotherapy. From WB-DWI data, tDV was obtained with the threshold for positive BM involvement. Mean FF was calculated from lumbar BM using the mDixon Quant sequence. At the completion of chemotherapy, patients were categorized into a CR/very good PR (VGPR) group (n = 15; mean age, 67.6 ± 10.3 years) and a PR, SD or PD group (n = 35; mean age, 69.1 ± 8.6 years). ROC curves were plotted to assess performance in predicting achievement of CR/VGPR. RESULTS:At second examination, serum M protein, β2-microglobulin, and tDV were significantly decreased and hemoglobin, mean ADC, and FF were significantly increased in the CR/VGPR group and serum M protein was significantly increased in the PR/SD/PD group. The general linear model demonstrated that percentage changes in FF and M protein contributed significantly to achieving CR/VGPR (P = 0.02, P = 0.04, respectively). AUCs of ROC curves were 0.964 for FF and 0.847 for M protein. CONCLUSIONS:Early change in FF of lumbar BM and serum M protein soon after induction of chemotherapy contributed significantly to prediction of CR/VGPR
    corecore