14 research outputs found

    Preimplant factors affecting postimplant CT-determined prostate volume and the CT/TRUS volume ratio after transperineal interstitial prostate brachytherapy with 125I free seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim was to identify preimplant factors affecting postimplant prostate volume and the increase in prostate volume after transperineal interstitial prostate brachytherapy with <sup>125</sup>I free seeds.</p> <p>Methods</p> <p>We reviewed the records of 180 patients who underwent prostate brachytherapy with <sup>125</sup>I free seeds for clinical T1/T2 prostate cancer. Eighty-one (45%) of the 180 patients underwent neoadjuvant hormonal therapy. No patient received supplemental external beam radiotherapy. Postimplant computed tomography was undertaken, and postimplant dosimetric analysis was performed. Univariate and multivariate analyses were performed to identify preimplant factors affecting postimplant prostate volume by computed tomography and the increase in prostate volume after implantation.</p> <p>Results</p> <p>Preimplant prostate volume by transrectal ultrasound, serum prostate-specific antigen, number of needles, and number of seeds implanted were significantly correlated with postimplant prostate volume by computed tomography. The increase in prostate volume after implantation was significantly higher in patients with neoadjuvant hormonal therapy than in those without. Preimplant prostate volume by transrectal ultrasound, number of needles, and number of seeds implanted were significantly correlated with the increase in prostate volume after implantation. Stepwise multiple linear regression analysis showed that preimplant prostate volume by transrectal ultrasound and neoadjuvant hormonal therapy were significant independent factors affecting both postimplant prostate volume by computed tomography and the increase in prostate volume after implantation.</p> <p>Conclusions</p> <p>The results of the present study show that preimplant prostate volume by transrectal ultrasound and neoadjuvant hormonal therapy are significant preimplant factors affecting both postimplant prostate volume by computed tomography and the increase in prostate volume after implantation.</p

    Incidence of seed migration to the chest, abdomen, and pelvis after transperineal interstitial prostate brachytherapy with loose 125I seeds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim was to determine the incidence of seed migration not only to the chest, but also to the abdomen and pelvis after transperineal interstitial prostate brachytherapy with loose <sup>125</sup>I seeds.</p> <p>Methods</p> <p>We reviewed the records of 267 patients who underwent prostate brachytherapy with loose <sup>125</sup>I seeds. After seed implantation, orthogonal chest radiographs, an abdominal radiograph, and a pelvic radiograph were undertaken routinely to document the occurrence and sites of seed migration. The incidence of seed migration to the chest, abdomen, and pelvis was calculated. All patients who had seed migration to the abdomen and pelvis subsequently underwent a computed tomography scan to identify the exact location of the migrated seeds. Postimplant dosimetric analysis was undertaken, and dosimetric results were compared between patients with and without seed migration.</p> <p>Results</p> <p>A total of 19,236 seeds were implanted in 267 patients. Overall, 91 of 19,236 (0.47%) seeds migrated in 66 of 267 (24.7%) patients. Sixty-nine (0.36%) seeds migrated to the chest in 54 (20.2%) patients. Seven (0.036%) seeds migrated to the abdomen in six (2.2%) patients. Fifteen (0.078%) seeds migrated to the pelvis in 15 (5.6%) patients. Seed migration occurred predominantly within two weeks after seed implantation. None of the 66 patients had symptoms related to the migrated seeds. Postimplant prostate D90 was not significantly different between patients with and without seed migration.</p> <p>Conclusion</p> <p>We showed the incidence of seed migration to the chest, abdomen and pelvis. Seed migration did not have a significant effect on postimplant prostate D90.</p

    I-125 Prostate Brachytherapy:Current and Perspectives

    No full text

    Examination of the dose distribution of volumetric modulated arc radiotherapy using a high-definition multi-leaf collimator for breast cancer patients with irradiated regional lymph nodes

    Get PDF
    Background: A high-definition multi-leaf collimator (HD-MLC) with 5- and 10-mm fine MLCs is useful for radiotherapy. However, it is difficult to irradiate the mammary gland and supraclavicular region using a HD-MLC because of the narrow field of volumetric modulated arc radiotherapy (VMAT). Therefore, we aimed to evaluate the dose distribution of the VMAT dose using a HD-MLC in 15 patients with left breast cancer undergoing postoperative irradiation of breast and regional lymph nodes, including the internal mammary node. Materials and methods: The following four plans were generated: three-arc VMAT using HD-MLC (HD-VMAT), two tangential arcs and one-arc VMAT using HD-MLC (tHD-VMAT), three-dimensional conformal radiotherapy (3DCRT) using HD-MLC, and two-arc VMAT using the Millennium 120-leaf MLC (M-VMAT). We assessed the doses to the target volume and organs at risk. Results: The target dose distributions were higher for HD-VMAT than 3DCRT. There were no significant differences in the heart mean dose (Dmean) or lung volume receiving 20 Gy (V20 Gy) between HD-VMAT and 3DCRT. The heart Dmean and lung V20 Gy of tHD-VMAT were higher than those of HD-VMAT, and the heart Dmean of M-VMAT was higher than that of HD-VMAT. However, the target doses of tHD-VMAT, M-VMAT, and HD-VMAT were equivalent. Conclusions: In cases of the mammary gland and regional lymph node irradiation, including the internal mammary node in patients with left breast cancer, HD-VMAT was not inferior to M-VMAT and provided a better dose distribution to the target volume and organs at risk compared with 3DCRT and tHD-VMAT.
    corecore