360 research outputs found

    Irregular polar coding for complexity-constrained lightwave systems

    Get PDF
    Next-generation fiber-optic communications call for ultra-reliable forward error correction codes that are capable of low-power and low-latency decoding. In this paper, we propose a new class of polar codes, whose polarization units are irregularly pruned to reduce computational complexity and decoding latency without sacrificing error correction performance. We then experimentally demonstrate that the proposed irregular polar codes can outperform state-of-the-art low-density parity-check (LDPC) codes, while decoding complexity and latency can be reduced by at least 30% and 70%, respectively, versus regular polar codes, while also obtaining a marginal performance improvement

    Zero Temperature Glass Transition in the Two-Dimensional Gauge Glass Model

    Full text link
    We investigate dynamic scaling properties of the two-dimensional gauge glass model for the vortex glass phase in superconductors with quenched disorder. From extensive Monte Carlo simulations we obtain static and dynamic finite size scaling behavior, where the static simulations use a temperature exchange method to ensure convergence at low temperatures. Both static and dynamic scaling of Monte Carlo data is consistent with a glass transition at zero temperature. We study a dynamic correlation function for the superconducting order parameter, as well as the phase slip resistance. From the scaling of these two functions, we find evidence for two distinct diverging correlation times at the zero temperature glass transition. The longer of these time scales is associated with phase slip fluctuations across the system that lead to finite resistance at any finite temperature, while the shorter time scale is associated with local phase fluctuations.Comment: 8 pages, 10 figures; v2: some minor correction

    On the existence of a finite-temperature transition in the two-dimensional gauge glass

    Full text link
    Results from Monte Carlo simulations of the two-dimensional gauge glass supporting a zero-temperature transition are presented. A finite-size scaling analysis of the correlation length shows that the system does not exhibit spin-glass order at finite temperatures. These results are compared to earlier claims of a finite-temperature transition.Comment: 4 pages, 2 figure

    Carcinoma Arising from Brunner's Gland in the Duodenum after 17 Years of Observation – A Case Report and Literature Review

    Get PDF
    A 60-year-old man presented with melena and hematemesis in 1984. Esophagogastroduodenoscopy (EGD) detected a small protruding lesion in the duodenal bulb, which was diagnosed as Brunner's adenoma. No significant change was detected in subsequent annual EGD and biopsies for 10 years, after which the patient was not observed for 7 years. The patient presented with melena again in 2001. The lesion had changed shape to become a 10 mm sessile tumor with a central depression, and following a biopsy was diagnosed as an adenocarcinoma. The patient underwent partial resection of the duodenum. Histopathological assessment showed acidophilic cells with swollen nuclei, and clear cells forming a tubular or papillary tubule in the mucosal lamina propria and submucosal layer. The tumor cells stained positive for lysozyme, indicating that they arose from Brunner's gland. The patient showed no sign of recurrence and was disease-free for more than 34 months after surgery. The patient died of pneumonia. This is an extremely rare case of primary duodenal carcinoma arising from Brunner's gland in a patient observed for 17 years

    Domain Wall Renormalization Group Study of XY Model with Quenched Random Phase Shifts

    Full text link
    The XY model with quenched random disorder is studied by a zero temperature domain wall renormalization group method in 2D and 3D. Instead of the usual phase representation we use the charge (vortex) representation to compute the domain wall, or defect, energy. For the gauge glass corresponding to the maximum disorder we reconfirm earlier predictions that there is no ordered phase in 2D but an ordered phase can exist in 3D at low temperature. However, our simulations yield spin stiffness exponents θs≈−0.36\theta_{s} \approx -0.36 in 2D and θs≈+0.31\theta_{s} \approx +0.31 in 3D, which are considerably larger than previous estimates and strongly suggest that the lower critical dimension is less than three. For the ±J\pm J XY spin glass in 3D, we obtain a spin stiffness exponent θs≈+0.10\theta_{s} \approx +0.10 which supports the existence of spin glass order at finite temperature in contrast with previous estimates which obtain θs<0\theta_{s}< 0. Our method also allows us to study renormalization group flows of both the coupling constant and the disorder strength with length scale LL. Our results are consistent with recent analytic and numerical studies suggesting the absence of a re-entrant transition in 2D at low temperature. Some possible consequences and connections with real vortex systems are discussed.Comment: 14 pages, 9 figures, revtex
    • …
    corecore