816 research outputs found

    Strange Baryon Production in Heavy Ion Collisions

    Get PDF
    The rapidity distribution of Λ\Lambda and Λˉ\bar{\Lambda} produced in nucleus-nucleus collisions at CERN energies is studied in the framework of an independent string model - with quark-antiquark as well as diquark-antidiquark pairs in the nucleon sea. It is shown that, besides the Λ\Lambda-Λˉ\bar{\Lambda} pair production resulting from the fragmentation of sea diquarks, final state interactions of co-moving secondaries π+NK+Λ\pi + N \to K + \Lambda and π+NˉK+Λˉ\pi + \bar{N} \to K + \bar{\Lambda} are needed in order to reproduce the data. Predictions for PbPb-PbPb collisions are presented.Comment: Plain TeX + epsf, 40 pages; 1 Postscript-table and 7 Postscript figures (uuencoded

    A generalization of the Wiener rational basis functions on infinite intervals: Part I-derivation and properties

    Get PDF
    We formulate and derive a generalization of an orthogonal rational-function basis for spectral expansions over the infinite or semi-infinite interval. The original functions, first presented by Wiener, are a mapping and weighting of the Fourier basis to the infinite interval. By identifying the Fourier series as a biorthogonal composition of Jacobi polynomials/functions, we are able to define generalized Fourier series which, when appropriately mapped to the whole real line and weighted, generalize Wiener's basis functions. It is known that the original Wiener rational functions inherit sparse Galerkin matrices for differentiation, and can utilize the fast Fourier transform (FFT) for computation of the expansion coefficients. We show that the generalized basis sets also have a sparse differentiation matrix and we discuss connection problems, which are necessary theoretical developments for application of the FFT

    Key Residues Defining the Μ-Opioid Receptor Binding Pocket: A Site-Directed Mutagenesis Study

    Full text link
    Structural elements of the rat Μ-opioid receptor important in ligand receptor binding and selectivity were examined using a site-directed mutagenesis approach. Five single amino acid mutations were made, three that altered conserved residues in the Μ, Δ, and Κ receptors (Asn 150 to Ala, His 297 to Ala, and Tyr 326 to Phe) and two designed to test for Μ/Δ selectivity (Ile 198 to Val and Val 202 to Ile). Mutation of His 297 in transmembrane domain 6 (TM6) resulted in no detectable binding with [ 3 H]DAMGO ( 3 H-labeled d-Ala 2 , N -Me-Phe 4 ,Gly-ol 5 -enkephalin), [ 3 H]bremazocine, or [ 3 H]ethylketocyclazocine. Mutation of Asn 150 in TM3 produces a three- to 20-fold increase in affinity for the opioid agonists morphine, DAMGO, fentanyl, Β-endorphin 1–31 , JOM-13, deltorphin II, dynorphin 1–13 , and U50,488, with no change in the binding of antagonists such as naloxone, naltrexone, naltrindole, and nor-binaltorphamine. In contrast, the Tyr 326 mutation in TM7 resulted in a decreased affinity for a wide spectrum of Μ, Δ, and Κ agonists and antagonists. Altering Val 202 to Ile in TM4 produced no change on ligand affinity, but Ile 198 to Val resulted in a four- to fivefold decreased affinity for the Μ agonists morphine and DAMGO, with no change in the binding affinities of Κ and Δ ligands.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65474/1/j.1471-4159.1997.68010344.x.pd

    Evaluation of Affymetrix Gene Chip sensitivity in rat hippocampal tissue using SAGE analysis *

    Full text link
    DNA microarrays are a powerful tool for monitoring thousands of transcript levels simultaneously. However, the use of DNA microarrays in studying the central nervous system faces several challenges. These include the detection of low-abundance transcripts in highly complex tissue as well as estimating relatively low-magnitude changes in transcript levels in response to experimental manipulation. Many transcripts important to brain function have low expression levels or are expressed in relatively few cells, making them difficult to detect in the complex background of brain tissue. The aim of the present study is to evaluate the sensitivity of Gene Chip detection of transcripts in brain by using results from serial analysis of gene expression (SAGE) studies. The results of this comparison indicate that Affymetrix Gene Chips, like SAGE, only reliably detect medium- to high-abundance transcripts and that detection of low-abundance transcripts, many of which have great relevance to biological function in brain, is inconsistent. Specifically, we estimate that Gene Chips reliably detect no more than 30% of the hippocampal transcriptome when using a gross hippocampal dissection as the source tissue. This report provides the first broad evaluation of Affymetrix Gene Chip sensitivity relevant to studying the brain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75717/1/j.1460-9568.2002.02097.x.pd

    The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    Get PDF
    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line

    Molecular basis for dynorphin A selectivity: A chimeric study

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31194/1/0000096.pd

    Cloning of potential candidates for guinea pig opioid receptors

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31190/1/0000092.pd

    Evidence for Diversity in Transcriptional Profiles of Single Hematopoietic Stem Cells

    Get PDF
    Hematopoietic stem cells replenish all the cells of the blood throughout the lifetime of an animal. Although thousands of stem cells reside in the bone marrow, only a few contribute to blood production at any given time. Nothing is known about the differences between individual stem cells that dictate their particular state of activation readiness. To examine such differences between individual stem cells, we determined the global gene expression profile of 12 single stem cells using microarrays. We showed that at least half of the genetic expression variability between 12 single cells profiled was due to biological variation in 44% of the genes analyzed. We also identified specific genes with high biological variance that are candidates for influencing the state of readiness of individual hematopoietic stem cells, and confirmed the variability of a subset of these genes using single-cell real-time PCR. Because apparent variation of some genes is likely due to technical factors, we estimated the degree of biological versus technical variation for each gene using identical RNA samples containing an RNA amount equivalent to that of single cells. This enabled us to identify a large cohort of genes with low technical variability whose expression can be reliably measured on the arrays at the single-cell level. These data have established that gene expression of individual stem cells varies widely, despite extremely high phenotypic homogeneity. Some of this variation is in key regulators of stem cell activity, which could account for the differential responses of particular stem cells to exogenous stimuli. The capacity to accurately interrogate individual cells for global gene expression will facilitate a systems approach to biological processes at a single-cell level
    corecore